Identification of Bacteria in Two Food Waste Black Soldier Fly Larvae Rearing Residues.

Moritz Gold, Fabienne von Allmen, Christian Zurbrügg, Jibin Zhang, Alexander Mathys
Author Information
  1. Moritz Gold: Sustainable Food Processing Laboratory, Department of Health Science and Technology, Institute of Food, Nutrition and Health, ETH Zürich, Zurich, Switzerland.
  2. Fabienne von Allmen: Sustainable Food Processing Laboratory, Department of Health Science and Technology, Institute of Food, Nutrition and Health, ETH Zürich, Zurich, Switzerland.
  3. Christian Zurbrügg: Department Sanitation, Water and Solid Waste for Development (Sandec), Eawag: Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland.
  4. Jibin Zhang: State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China.
  5. Alexander Mathys: Sustainable Food Processing Laboratory, Department of Health Science and Technology, Institute of Food, Nutrition and Health, ETH Zürich, Zurich, Switzerland.

Abstract

Significant economic, environmental, and social impacts are associated with the avoidable disposal of foods worldwide. Mass-rearing of black soldier fly () larvae using organic wastes and food- and agro-industry side products is promising for recycling resources within the food system. One current challenge of this approach is ensuring a reliable and high conversion performance of larvae with inherently variable substrates. Research has been devoted to increasing rearing performance by optimizing substrate nutrient contents and ratios, while the potential of the substrate and larval gut microbiota to increase rearing performance remains untapped. Since previous research has focused on gut microbiota, here, we describe bacterial dynamics in the residue (i.e., the mixture of frass and substrate) of black soldier fly larvae reared on two food wastes (i.e., canteen and household waste). To identify members of the substrate and residue microbiota, potentially associated with rearing performance, bacterial dynamics were also studied in the canteen waste without larvae, and after inactivation by irradiation of the initial microbiota in canteen waste. The food waste substrates had similar microbiota; both were dominated by common lactic acid bacteria. Inactivation of the canteen waste microbiota, which was dominated by , , and , decreased the levels of all rearing performance indicators by 31-46% relative to canteen waste with the native microbiota. In both food waste substrates, larval rearing decreased the bacterial richness and changed the physicochemical residue properties and composition over the rearing period of 12 days, and typical members of the larval intestinal microbiota (i.e., , , , and became more abundant, suggesting their transfer into the residue through excretions. Future studies should isolate members of these taxa and elucidate their true potential to influence black soldier fly mass-rearing performance.

Keywords

References

  1. Front Microbiol. 2014 Nov 10;5:590 [PMID: 25426108]
  2. Cell Metab. 2011 Sep 7;14(3):403-14 [PMID: 21907145]
  3. J Environ Manage. 2019 May 1;237:75-83 [PMID: 30780056]
  4. Environ Entomol. 2018 Feb 8;47(1):159-165 [PMID: 29325020]
  5. J Econ Entomol. 2010 Oct;103(5):1832-41 [PMID: 21061987]
  6. Science. 2011 Nov 4;334(6056):670-4 [PMID: 22053049]
  7. Waste Manag. 2020 Feb 1;102:312-318 [PMID: 31707320]
  8. Appl Microbiol Biotechnol. 2015 Jan;99(2):869-83 [PMID: 25306907]
  9. Gut Microbes. 2012 Jul-Aug;3(4):307-21 [PMID: 22572876]
  10. J Biotechnol. 2020 Feb 20;310:62-67 [PMID: 31877336]
  11. Microb Biotechnol. 2021 May;14(3):886-896 [PMID: 32449587]
  12. PLoS One. 2017 Aug 3;12(8):e0182533 [PMID: 28771577]
  13. Compr Rev Food Sci Food Saf. 2018 Sep;17(5):1172-1183 [PMID: 33350154]
  14. Environ Int. 2020 Sep;142:105834 [PMID: 32540627]
  15. J Microbiol Methods. 2011 Jul;86(1):42-51 [PMID: 21457733]
  16. Environ Entomol. 2011 Feb;40(1):30-5 [PMID: 22182608]
  17. Front Microbiol. 2020 May 21;11:993 [PMID: 32508795]
  18. Microb Ecol. 2019 May;77(4):913-930 [PMID: 30430196]
  19. Annu Rev Cell Dev Biol. 2013;29:571-92 [PMID: 23808845]
  20. J Microbiol Methods. 2010 Sep;82(3):234-7 [PMID: 20600366]
  21. FEMS Microbiol Ecol. 2012 Mar;79(3):581-93 [PMID: 22092755]
  22. Waste Manag. 2020 Jul 1;112:40-51 [PMID: 32497900]
  23. Food Funct. 2016 Mar;7(3):1251-65 [PMID: 26797090]
  24. Waste Manag. 2018 Dec;82:302-318 [PMID: 30509593]
  25. PLoS One. 2013 Apr 22;8(4):e61217 [PMID: 23630581]
  26. Food Microbiol. 2018 Apr;70:181-191 [PMID: 29173626]
  27. J Nutr Sci. 2014 Sep 25;3:e29 [PMID: 26101598]
  28. Environ Entomol. 2020 Apr 14;49(2):405-411 [PMID: 31904089]
  29. PLoS One. 2013 Jun 19;8(6):e67480 [PMID: 23840715]
  30. J Insect Sci. 2020 May 1;20(3): [PMID: 32593171]
  31. Cell Res. 2020 Jan;30(1):50-60 [PMID: 31767972]
  32. Waste Manag. 2020 Feb 1;102:319-329 [PMID: 31707321]
  33. Chemosphere. 2013 Oct;93(7):1247-57 [PMID: 23876506]
  34. Appl Environ Microbiol. 2014 Aug;80(16):5116-23 [PMID: 24928874]
  35. J Environ Manage. 2018 Jul 1;217:668-676 [PMID: 29654970]
  36. J Food Prot. 2004 Apr;67(4):685-90 [PMID: 15083719]
  37. Appl Environ Microbiol. 2018 Apr 16;84(9): [PMID: 29475866]
  38. Bioinformatics. 2011 Nov 1;27(21):2957-63 [PMID: 21903629]
  39. Sci Rep. 2018 May 29;8(1):8220 [PMID: 29844418]
  40. Animals (Basel). 2019 May 24;9(5): [PMID: 31137732]
  41. J Insect Physiol. 2018 Aug - Sep;109:11-20 [PMID: 29803861]
  42. Sci Total Environ. 2013 Aug 1;458-460:312-8 [PMID: 23669577]
  43. Waste Manag. 2019 Aug 1;96:65-74 [PMID: 31376971]
  44. Insect Sci. 2020 Apr;27(2):256-265 [PMID: 30047567]
  45. Dev Comp Immunol. 2018 Jan;78:141-148 [PMID: 28966127]
  46. Microb Biotechnol. 2019 May;12(3):528-543 [PMID: 30884189]
  47. J Med Entomol. 1975 Sep 25;12(3):379-81 [PMID: 1181446]
  48. Cell Metab. 2018 Feb 6;27(2):362-377.e8 [PMID: 29290388]
  49. Front Microbiol. 2018 Sep 10;9:2138 [PMID: 30250460]
  50. Trends Ecol Evol. 2019 Feb;34(2):132-138 [PMID: 30655013]
  51. Microorganisms. 2020 Jun 15;8(6): [PMID: 32549385]
  52. Waste Manag. 2019 Mar 1;86:114-122 [PMID: 30902235]
  53. J Med Entomol. 2000 Nov;37(6):924-8 [PMID: 11126551]
  54. J Agric Food Chem. 2017 Mar 22;65(11):2275-2278 [PMID: 28252948]
  55. Foods. 2017 Oct 18;6(10): [PMID: 29057841]
  56. Crit Rev Food Sci Nutr. 2008 Feb;48(2):177-84 [PMID: 18274971]
  57. Antonie Van Leeuwenhoek. 2020 Sep;113(9):1323-1344 [PMID: 32638136]
  58. AMB Express. 2017 Dec;7(1):147 [PMID: 28697583]
  59. Am J Clin Nutr. 2001 Feb;73(2 Suppl):365S-373S [PMID: 11157343]
  60. J Med Entomol. 1973 Dec 30;10(6):591-5 [PMID: 4779923]
  61. ISME J. 2012 Jul;6(7):1356-66 [PMID: 22237540]
  62. Front Microbiol. 2019 Feb 11;10:57 [PMID: 30804896]
  63. J Econ Entomol. 2018 Dec 14;111(6):2676-2683 [PMID: 30239768]
  64. J Med Entomol. 1986 Mar 31;23(2):208-11 [PMID: 3517334]
  65. J Insect Sci. 2016 Jan 21;16: [PMID: 26798138]
  66. Bioinformatics. 2011 Mar 15;27(6):863-4 [PMID: 21278185]
  67. FEMS Microbiol Rev. 2013 Sep;37(5):699-735 [PMID: 23692388]
  68. J Med Entomol. 2001 Mar;38(2):161-6 [PMID: 11296817]
  69. Curr Microbiol. 2011 May;62(5):1390-9 [PMID: 21267722]
  70. Appl Environ Microbiol. 2019 Jan 9;85(2): [PMID: 30504212]
  71. Waste Manag. 2019 Feb 1;84:173-181 [PMID: 30691890]
  72. J Environ Manage. 2020 Apr 15;260:110066 [PMID: 31941627]
  73. Environ Microbiol. 2018 Nov;20(11):4051-4062 [PMID: 30318817]
  74. Dermatology. 2003;207(4):362-6 [PMID: 14657627]

Word Cloud

Created with Highcharts 10.0.0microbiotawasteperformancerearingcanteenlarvaefoodsubstrateresidueblacksoldierflysubstrateslarvalbacterialiemembersassociatedwastespotentialgutdynamicsfrassdominateddecreasedSignificanteconomicenvironmentalsocialimpactsavoidabledisposalfoodsworldwideMass-rearingusingorganicfood-agro-industrysideproductspromisingrecyclingresourceswithinsystemOnecurrentchallengeapproachensuringreliablehighconversioninherentlyvariableResearchdevotedincreasingoptimizingnutrientcontentsratiosincreaseremainsuntappedSincepreviousresearchfocuseddescribemixturerearedtwohouseholdidentifypotentiallyalsostudiedwithoutinactivationirradiationinitialsimilarcommonlacticacidbacteriaInactivationlevelsindicators31-46%relativenativerichnesschangedphysicochemicalpropertiescompositionperiod12daystypicalintestinalbecameabundantsuggestingtransferexcretionsFuturestudiesisolatetaxaelucidatetrueinfluencemass-rearingIdentificationBacteriaTwoFoodWasteBlackSoldierFlyLarvaeRearingResiduesHermetiaillucensbioconversioninsectsprobiotics

Similar Articles

Cited By