Adhesion, Biofilm Formation, and Sequencing of Isolated From Water in the Czech Republic.

Ekaterina Shagieva, Martin Teren, Hana Michova, Nicol Strakova, Renata Karpiskova, Katerina Demnerova
Author Information
  1. Ekaterina Shagieva: Laboratory of Food Microbiology, Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Czechia.
  2. Martin Teren: Laboratory of Food Microbiology, Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Czechia.
  3. Hana Michova: Laboratory of Food Microbiology, Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Czechia.
  4. Nicol Strakova: Laboratory of Zoonoses and Antibiotic Resistance, Department of Microbiology and Antimicrobial Resistance, Veterinary Research Institute, Brno, Czechia.
  5. Renata Karpiskova: Laboratory of Zoonoses and Antibiotic Resistance, Department of Microbiology and Antimicrobial Resistance, Veterinary Research Institute, Brno, Czechia.
  6. Katerina Demnerova: Laboratory of Food Microbiology, Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Czechia.

Abstract

The microaerophilic pathogen is a leading bacterial cause of human gastroenteritis in developed countries. Even though it has a reputation as a fastidious organism, is widespread and can be easily isolated from various animals, food, and environmental sources. It is suggested that an ability to form biofilms is probably necessary for the survival of under harsh environmental conditions. The first step required for successful biofilm formation is adhesion to a suitable surface. Therefore, in this work, the degree of adhesion was evaluated, followed by characterization and quantification of biofilms using confocal laser scanning microscopy (CLSM). A total of 15 isolates of were used in the experiments (12 isolates from surface and waste waters, 1 human clinical, 1 food and 1 ACTT BAA-2151 collection strain, all samples originated from the Czech Republic). Regardless of the sample origin, all isolates were able to adhere to the polystyrene surface within 30 min, with the number of attached cells increasing with the time of incubation. The resulting data showed that all isolates were able to form complex voluminous biofilms after 24 h of cultivation. The average amount of biovolume ranged from 3.59 × 10 µm to 17.50 × 10 µm in isolates obtained from different sources of water, 16.79 × 10 µm in the food isolate and 10.92 × 10 µm in the collection strain. However, the highest amount of biomass was produced by the human clinical isolate (25.48 × 10 µm). Similar to the quantity, the architecture of the biofilms also differed, from a rugged flat monolayer of cells to large clustered structures. Further, all isolates were tested for the presence of the gene, as the /AI-2 (autoinducer-2) quorum sensing pathway has been previously connected with enhanced biofilm formation. Two isolates originated from surface waters did not possess the gene. These isolates formed thinner and sparser biofilms lacking the presence of significant clusters. However, the ability to adhere to the surface was preserved. The sequencing of the -containing fragments shown a high similarity of the gene among the isolates.

Keywords

References

  1. Appl Environ Microbiol. 2004 Jan;70(1):87-95 [PMID: 14711629]
  2. J Appl Microbiol. 1999 Apr;86(4):603-14 [PMID: 10212406]
  3. Int J Food Microbiol. 2002 Apr 5;74(3):177-88 [PMID: 11981968]
  4. Nat Rev Microbiol. 2004 Feb;2(2):95-108 [PMID: 15040259]
  5. Front Microbiol. 2020 Mar 10;11:207 [PMID: 32210924]
  6. Appl Environ Microbiol. 1987 Mar;53(3):523-6 [PMID: 3579268]
  7. Compr Rev Food Sci Food Saf. 2003 Jan;2(1):22-32 [PMID: 33451238]
  8. J Bacteriol. 2006 Jun;188(12):4312-20 [PMID: 16740937]
  9. J Food Prot. 2012 Jan;75(1):195-206 [PMID: 22221378]
  10. J Infect Dis. 1988 Mar;157(3):472-9 [PMID: 3343522]
  11. FEMS Microbiol Lett. 2007 Oct;275(2):278-85 [PMID: 17714477]
  12. J Water Health. 2014 Sep;12(3):555-63 [PMID: 25252359]
  13. J Microbiol Biotechnol. 2015 Nov;25(11):1871-9 [PMID: 26215271]
  14. Annu Rev Microbiol. 1995;49:711-45 [PMID: 8561477]
  15. PLoS One. 2011 Jan 11;6(1):e15876 [PMID: 21264316]
  16. Front Microbiol. 2017 Jul 18;8:1332 [PMID: 28769900]
  17. Am J Public Health. 1986 Apr;76(4):424-8 [PMID: 3953920]
  18. Appl Environ Microbiol. 2010 Apr;76(7):2122-8 [PMID: 20139307]
  19. J Food Prot. 2007 Jun;70(6):1379-85 [PMID: 17612067]
  20. Appl Environ Microbiol. 2012 Feb;78(4):1033-8 [PMID: 22179238]
  21. J Appl Microbiol. 1998 Jul;85(1):187-91 [PMID: 9721669]
  22. CSH Protoc. 2006 Jun 01;2006(1): [PMID: 22485377]
  23. Virulence. 2016 Oct 2;7(7):846-51 [PMID: 27268722]
  24. Clin Infect Dis. 2001 Apr 15;32(8):1201-6 [PMID: 11283810]
  25. Appl Environ Microbiol. 1998 Feb;64(2):733-41 [PMID: 9464415]
  26. Int J Food Microbiol. 2010 Oct 15;143(3):118-24 [PMID: 20805009]
  27. Phytother Res. 2015 Oct;29(10):1585-9 [PMID: 26058384]
  28. Appl Environ Microbiol. 2009 Jan;75(1):281-5 [PMID: 19011073]
  29. PLoS One. 2012;7(9):e46402 [PMID: 23029510]
  30. Emerg Infect Dis. 2003 Oct;9(10):1232-41 [PMID: 14609457]
  31. MMWR Morb Mortal Wkly Rep. 2019 Feb 22;68(7):169-173 [PMID: 30789878]
  32. Res Microbiol. 2009 Jun;160(5):345-52 [PMID: 19477271]
  33. Water Res. 2016 Sep 15;101:36-45 [PMID: 27244295]
  34. Appl Environ Microbiol. 2003 Mar;69(3):1391-6 [PMID: 12620821]
  35. Environ Microbiol. 2011 Jun;13(6):1549-60 [PMID: 21418497]
  36. Epidemiol Infect. 1987 Jun;98(3):263-9 [PMID: 3595744]
  37. Appl Environ Microbiol. 2007 Mar;73(6):1908-13 [PMID: 17259368]
  38. Front Microbiol. 2016 Jun 30;7:1002 [PMID: 27446042]
  39. Int J Hyg Environ Health. 2001 Jul;203(5-6):435-43 [PMID: 11556147]
  40. J Appl Bacteriol. 1986 Aug;61(2):125-32 [PMID: 3771411]
  41. Front Cell Infect Microbiol. 2012 Mar 06;2:22 [PMID: 22919614]
  42. EFSA J. 2019 Dec 11;17(12):e05926 [PMID: 32626211]
  43. Scand J Infect Dis. 2012 Aug;44(8):586-94 [PMID: 22385125]
  44. Microbiology (Reading). 2002 May;148(Pt 5):1475-1481 [PMID: 11988522]
  45. Infect Immun. 1996 Aug;64(8):2945-9 [PMID: 8757818]
  46. Ann Intern Med. 1983 Mar;98(3):360-5 [PMID: 6830079]
  47. Appl Environ Microbiol. 1993 Apr;59(4):987-96 [PMID: 8476300]
  48. Int J Food Microbiol. 2009 Jan 31;129(1):68-73 [PMID: 19058868]
  49. Infect Immun. 2001 Apr;69(4):2462-9 [PMID: 11254608]
  50. Semin Arthritis Rheum. 2007 Aug;37(1):48-55 [PMID: 17360026]
  51. J Epidemiol Community Health. 1997 Dec;51(6):686-91 [PMID: 9519133]
  52. Clin Microbiol Rev. 2015 Jul;28(3):687-720 [PMID: 26062576]
  53. Microorganisms. 2020 Jan 11;8(1): [PMID: 31940805]
  54. Microbiology (Reading). 2006 Feb;152(Pt 2):387-396 [PMID: 16436427]
  55. Front Microbiol. 2015 Jul 13;6:709 [PMID: 26217332]
  56. Clin Microbiol Rev. 2002 Apr;15(2):167-93 [PMID: 11932229]
  57. Avian Dis. 2003 Jan-Mar;47(1):101-7 [PMID: 12713164]
  58. Food Microbiol. 2009 Feb;26(1):44-51 [PMID: 19028304]
  59. Appl Environ Microbiol. 2001 Sep;67(9):3951-7 [PMID: 11525990]

MeSH Term

Animals
Bacterial Proteins
Biofilms
Campylobacter jejuni
Carbon-Sulfur Lyases
Czech Republic
Humans
Quorum Sensing
Water

Chemicals

Bacterial Proteins
Water
Carbon-Sulfur Lyases

Word Cloud

Created with Highcharts 10.0.0isolates10biofilmssurface×µmhumanfoodbiofilmadhesion1genepathogenenvironmentalsourcesabilityformformationconfocallaserscanningmicroscopywatersclinicalcollectionstrainoriginatedCzechRepublicableadherecellsamountwaterisolateHoweverpresencemicroaerophilicleadingbacterialcausegastroenteritisdevelopedcountriesEventhoughreputationfastidiousorganismwidespreadcaneasilyisolatedvariousanimalssuggestedprobablynecessarysurvivalharshconditionsfirststeprequiredsuccessfulsuitableThereforeworkdegreeevaluatedfollowedcharacterizationquantificationusingCLSMtotal15usedexperiments12wasteACTTBAA-2151samplesRegardlesssampleoriginpolystyrenewithin30 minnumberattachedincreasingtimeincubationresultingdatashowedcomplexvoluminous24 hcultivationaveragebiovolumeranged3591750obtaineddifferent167992highestbiomassproduced2548Similarquantityarchitecturealsodifferedruggedflatmonolayerlargeclusteredstructurestested/AI-2autoinducer-2quorumsensingpathwaypreviouslyconnectedenhancedTwopossessformedthinnersparserlackingsignificantclusterspreservedsequencing-containingfragmentsshownhighsimilarityamongAdhesionBiofilmFormationSequencingIsolatedWaterCampylobacterjejunifoodborneluxS

Similar Articles

Cited By