Long-term memory guides resource allocation in working memory.

Allison L Bruning, Jarrod A Lewis-Peacock
Author Information
  1. Allison L Bruning: Department of Psychology, Center for Learning and Memory, University of Texas at Austin, 108 E Dean Keeton St, Stop A8000, Austin, TX, 78712, USA. abruning@utexas.edu.
  2. Jarrod A Lewis-Peacock: Department of Psychology, Center for Learning and Memory, University of Texas at Austin, 108 E Dean Keeton St, Stop A8000, Austin, TX, 78712, USA.

Abstract

Working memory capacity is incredibly limited and thus it is important to use this resource wisely. Prior knowledge in long-term memory can aid in efficient encoding of information by allowing for the prioritization of novel stimuli over familiar ones. Here we used a full-report procedure in a visual working memory paradigm, where participants reported the location of six colored circles in any order, to examine the influence of prior information on resource allocation in working memory. Participants learned that one of the items appeared in a restricted range of locations, whereas the remaining items could appear in any location. We found that participants' memory performance benefited from learning this prior information. Specifically, response precision increased for all items when prior information was available for one of the items. Responses for both familiar and novel items were systematically ordered from highest to lowest precision. Participants tended to report the familiar item in the second half of the six responses and did so with greater precision than for novel items. Moreover, novel items that appeared near the center of the prior location were reported with worse precision than novel items that appeared elsewhere. This shows that people strategically allocated working memory resources by ignoring information that appeared in predictable locations and prioritizing the encoding of information that appeared in unpredictable locations. Together these findings demonstrate that people rely on long-term memory not only for remembering familiar items, but also for the strategic allocation of their limited capacity working memory resources.

References

  1. Trends Cogn Sci. 2013 Aug;17(8):391-400 [PMID: 23850263]
  2. PLoS Comput Biol. 2019 Jul 8;15(7):e1006681 [PMID: 31283765]
  3. J Cogn Neurosci. 2014 Jul;26(7):1546-54 [PMID: 24392894]
  4. Mem Cognit. 2017 May;45(4):677-689 [PMID: 27933560]
  5. Elife. 2019 Mar 07;8: [PMID: 30843519]
  6. Sci Rep. 2018 Jan 8;8(1):23 [PMID: 29311568]
  7. J Exp Psychol Hum Percept Perform. 2017 Jul;43(7):1454-1465 [PMID: 28368161]
  8. Nat Neurosci. 2015 Dec;18(12):1728-30 [PMID: 26502262]
  9. Behav Brain Sci. 2001 Feb;24(1):87-114; discussion 114-85 [PMID: 11515286]
  10. J Vis. 2012 Dec 21;12(13):19 [PMID: 23262151]
  11. Psychon Bull Rev. 2017 Apr;24(2):453-458 [PMID: 27325056]
  12. Psychol Sci. 2008 Jul;19(7):678-85 [PMID: 18727783]
  13. J Exp Psychol Gen. 2009 Nov;138(4):487-502 [PMID: 19883132]
  14. PLoS One. 2014 Apr 23;9(4):e94362 [PMID: 24759905]
  15. J Exp Psychol Hum Percept Perform. 2017 Oct;43(10):1843-1854 [PMID: 28967787]
  16. Nat Hum Behav. 2020 Nov;4(11):1156-1172 [PMID: 32895546]
  17. Proc Natl Acad Sci U S A. 2012 May 29;109(22):8780-5 [PMID: 22582168]
  18. Ann N Y Acad Sci. 2018 Jul;1424(1):256-267 [PMID: 29604084]
  19. Elife. 2018 Jul 31;7: [PMID: 30063006]
  20. Proc Natl Acad Sci U S A. 2020 Apr 14;117(15):8391-8397 [PMID: 32229572]
  21. Neuron. 2006 Mar 16;49(6):905-16 [PMID: 16543137]
  22. J Exp Psychol Gen. 2015 Aug;144(4):744-63 [PMID: 25985259]
  23. Nature. 1997 Nov 20;390(6657):279-81 [PMID: 9384378]
  24. Elife. 2020 Apr 07;9: [PMID: 32255423]
  25. Trends Cogn Sci. 2000 Apr;4(4):138-147 [PMID: 10740278]
  26. Trends Cogn Sci. 2008 Sep;12(9):342-8 [PMID: 18693131]
  27. Atten Percept Psychophys. 2015 May;77(4):1143-58 [PMID: 25720758]
  28. Cogn Psychol. 2017 Sep;97:79-97 [PMID: 28734172]
  29. J Exp Psychol Gen. 2019 Aug;148(8):1373-1385 [PMID: 31343232]
  30. J Exp Psychol Gen. 2000 Jun;129(2):220-41 [PMID: 10868335]
  31. Vision Res. 2014 Dec;105:70-6 [PMID: 25240420]
  32. Sci Rep. 2018 Nov 1;8(1):16162 [PMID: 30385803]
  33. J Vis. 2019 Feb 1;19(2):11 [PMID: 30802280]
  34. J Exp Psychol Learn Mem Cogn. 2017 Jan;43(1):1-22 [PMID: 27685018]
  35. J Vis. 2016;16(3):32 [PMID: 26913624]
  36. J Cogn Neurosci. 2020 Jan;32(1):124-140 [PMID: 31560266]
  37. J Exp Psychol Hum Percept Perform. 2008 Jun;34(3):556-68 [PMID: 18505323]
  38. Nat Neurosci. 2014 Mar;17(3):347-56 [PMID: 24569831]
  39. J Exp Psychol Gen. 2022 Apr;151(4):763-780 [PMID: 34582234]

Grants

  1. R01 EY028746/NEI NIH HHS
  2. R01EY028746/NIH HHS

MeSH Term

Adolescent
Adult
Attention
Behavior
Female
Humans
Learning
Male
Memory, Short-Term
Mental Recall
Models, Biological
Resource Allocation
Young Adult

Word Cloud

Created with Highcharts 10.0.0memoryitemsinformationnovelworkingappearedfamiliarpriorprecisionresourcelocationallocationlocationscapacitylimitedlong-termencodingreportedsixParticipantsonepeopleresourcesWorkingincrediblythusimportantusewiselyPriorknowledgecanaidefficientallowingprioritizationstimulionesusedfull-reportprocedurevisualparadigmparticipantscoloredcirclesorderexamineinfluencelearnedrestrictedrangewhereasremainingappearfoundparticipants'performancebenefitedlearningSpecificallyresponseincreasedavailableResponsessystematicallyorderedhighestlowesttendedreportitemsecondhalfresponsesgreaterMoreovernearcenterworseelsewhereshowsstrategicallyallocatedignoringpredictableprioritizingunpredictableTogetherfindingsdemonstraterelyrememberingalsostrategicLong-termguides

Similar Articles

Cited By