scTenifoldNet: A Machine Learning Workflow for Constructing and Comparing Transcriptome-wide Gene Regulatory Networks from Single-Cell Data.

Daniel Osorio, Yan Zhong, Guanxun Li, Jianhua Z Huang, James J Cai
Author Information
  1. Daniel Osorio: Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA.
  2. Yan Zhong: Department of Statistics, Texas A&M University, College Station, TX 77843, USA.
  3. Guanxun Li: Department of Statistics, Texas A&M University, College Station, TX 77843, USA.
  4. Jianhua Z Huang: Department of Statistics, Texas A&M University, College Station, TX 77843, USA.
  5. James J Cai: Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA.

Abstract

We present scTenifoldNet-a machine learning workflow built upon principal-component regression, low-rank tensor approximation, and manifold alignment-for constructing and comparing single-cell gene regulatory networks (scGRNs) using data from single-cell RNA sequencing. scTenifoldNet reveals regulatory changes in gene expression between samples by comparing the constructed scGRNs. With real data, scTenifoldNet identifies specific gene expression programs associated with different biological processes, providing critical insights into the underlying mechanism of regulatory networks governing cellular transcriptional activities.

Keywords

References

  1. IEEE/ACM Trans Comput Biol Bioinform. 2017 Oct 10;: [PMID: 29028204]
  2. Cell Syst. 2017 Sep 27;5(3):251-267.e3 [PMID: 28957658]
  3. Nat Neurosci. 2019 Oct;22(10):1696-1708 [PMID: 31551601]
  4. J Biol Chem. 2001 Jan 12;276(2):1185-94 [PMID: 11035014]
  5. Nat Methods. 2018 Apr;15(4):255-261 [PMID: 29481549]
  6. BMC Bioinformatics. 2010 Feb 19;11:95 [PMID: 20170493]
  7. Arch Neurol. 2007 Dec;64(12):1706-11 [PMID: 18071033]
  8. Nucleic Acids Res. 2016 Jul 8;44(W1):W90-7 [PMID: 27141961]
  9. Genome Biol. 2015 Dec 10;16:278 [PMID: 26653891]
  10. Curr Cancer Drug Targets. 2010 Feb;10(1):80-95 [PMID: 20088790]
  11. Drugs. 2007;67(17):2585-607 [PMID: 18034592]
  12. Bioinformatics. 2020 Sep 15;36(18):4774-4780 [PMID: 33026066]
  13. Bioinformatics. 2017 Aug 01;33(15):2314-2321 [PMID: 28379368]
  14. BMC Bioinformatics. 2018 Jun 19;19(1):232 [PMID: 29914350]
  15. Proc Natl Acad Sci U S A. 2019 Oct 8;116(41):20545-20555 [PMID: 31548395]
  16. BMC Bioinformatics. 2013 Apr 15;14:128 [PMID: 23586463]
  17. Proc Natl Acad Sci U S A. 1969 Feb;62(2):357-61 [PMID: 4894326]
  18. Oncologist. 2004;9(6):717-8 [PMID: 15561815]
  19. Nat Med. 2020 Jan;26(1):131-142 [PMID: 31932797]
  20. Genome Biol. 2007;8(6):R128 [PMID: 17598886]
  21. Bioinformatics. 2010 Oct 1;26(19):2438-44 [PMID: 20709693]
  22. Proc Natl Acad Sci U S A. 2006 Mar 7;103(10):3908-13 [PMID: 16537460]
  23. BMC Bioinformatics. 2006 Mar 20;7 Suppl 1:S7 [PMID: 16723010]
  24. J Comput Biol. 2000;7(3-4):601-20 [PMID: 11108481]
  25. Database (Oxford). 2019 Jan 1;2019: [PMID: 30951143]
  26. Cytokine Growth Factor Rev. 2007 Oct-Dec;18(5-6):363-71 [PMID: 17698400]
  27. Theor Biol Med Model. 2015 Nov 16;12:26 [PMID: 26573569]
  28. Commun Stat Appl Methods. 2015 Nov;22(6):665-674 [PMID: 26688802]
  29. Multivariate Behav Res. 1999 Oct 1;34(4):441-56 [PMID: 26801635]
  30. Front Immunol. 2017 Jul 25;8:873 [PMID: 28791024]
  31. Drugs Today (Barc). 2005 Feb;41(2):107-27 [PMID: 15821783]
  32. BMC Genomics. 2019 Dec 30;20(Suppl 12):1003 [PMID: 31888454]
  33. Brief Funct Genomics. 2018 Jul 1;17(4):246-254 [PMID: 29342231]
  34. Nat Methods. 2013 Nov;10(11):1093-5 [PMID: 24056876]
  35. Bioinformatics. 2018 Jan 15;34(2):258-266 [PMID: 28968704]
  36. Nat Methods. 2019 Dec;16(12):1289-1296 [PMID: 31740819]
  37. Br J Cancer. 2020 Jul;123(1):101-113 [PMID: 32362655]
  38. Cell. 2018 Jul 26;174(3):716-729.e27 [PMID: 29961576]
  39. Nat Methods. 2017 Nov;14(11):1083-1086 [PMID: 28991892]
  40. Nature. 2014 Mar 13;507(7491):190-4 [PMID: 24499815]
  41. Nat Methods. 2014 Jul;11(7):740-2 [PMID: 24836921]
  42. Neuron. 2002 Oct 10;36(2):213-28 [PMID: 12383778]
  43. PLoS Comput Biol. 2020 Jul 27;16(7):e1007471 [PMID: 32716923]
  44. Bioinformatics. 2017 Mar 1;33(5):764-766 [PMID: 27993778]
  45. Cancer. 2002 Mar 1;94(5):1593-611 [PMID: 11920518]
  46. Bioinformatics. 2010 Jan 1;26(1):139-40 [PMID: 19910308]
  47. J Neurosci. 2006 Oct 4;26(40):10129-40 [PMID: 17021169]
  48. Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50 [PMID: 16199517]
  49. PLoS One. 2010 Sep 28;5(9): [PMID: 20927193]
  50. Cells. 2019 Dec 19;9(1): [PMID: 31861624]
  51. J Alzheimers Dis. 2014;42(4):1221-7 [PMID: 25024306]
  52. BMC Syst Biol. 2018 May 25;12(1):59 [PMID: 29801503]
  53. Cell Rep. 2018 Sep 25;24(13):3619-3629.e4 [PMID: 30257220]
  54. Cell Syst. 2020 Sep 23;11(3):252-271.e11 [PMID: 32871105]
  55. Neuroscience. 2011 Dec 15;198:95-111 [PMID: 21872647]
  56. Expert Opin Biol Ther. 2005 Aug;5(8):1085-93 [PMID: 16050785]
  57. Nat Methods. 2012 Jul 15;9(8):796-804 [PMID: 22796662]
  58. Nat Biotechnol. 2021 Jan;39(1):30-34 [PMID: 32690972]
  59. Cell Rep. 2022 Feb 8;38(6):110333 [PMID: 35139376]
  60. Am J Respir Cell Mol Biol. 2011 Jul;45(1):101-10 [PMID: 20855650]
  61. Cell Syst. 2020 Mar 25;10(3):265-274.e11 [PMID: 32135093]
  62. Cell Stem Cell. 2018 Aug 02;23(2):166-179 [PMID: 29754780]
  63. Proc Natl Acad Sci U S A. 2011 Sep 27;108(39):16446-50 [PMID: 21930931]
  64. Clin Exp Pharmacol Physiol. 2003 May-Jun;30(5-6):307-16 [PMID: 12859419]
  65. Methods Mol Biol. 2019;1883:235-249 [PMID: 30547403]
  66. Science. 1998 Feb 6;279(5352):863-7 [PMID: 9452386]
  67. Nat Methods. 2020 Feb;17(2):147-154 [PMID: 31907445]
  68. J Neurosci. 1992 Feb;12(2):483-8 [PMID: 1346804]
  69. Nature. 2018 Nov;563(7730):197-202 [PMID: 30356220]
  70. Bioinformatics. 2018 Mar 15;34(6):964-970 [PMID: 29028984]
  71. Trends Mol Med. 2013 Oct;19(10):594-603 [PMID: 23871436]
  72. Bioinformatics. 2019 Jun 1;35(12):2159-2161 [PMID: 30445495]

Word Cloud

Created with Highcharts 10.0.0generegulatorysingle-cellscTenifoldNetmachinelearningprincipal-componentregressiontensormanifoldcomparingnetworksscGRNsdataRNAsequencingexpressionpresentscTenifoldNet-aworkflowbuiltuponlow-rankapproximationalignment-forconstructingusingrevealschangessamplesconstructedrealidentifiesspecificprogramsassociateddifferentbiologicalprocessesprovidingcriticalinsightsunderlyingmechanismgoverningcellulartranscriptionalactivitiesscTenifoldNet:MachineLearningWorkflowConstructingComparingTranscriptome-wideGeneRegulatoryNetworksSingle-CellDatanetworkalignmentscRNA-seqdecomposition

Similar Articles

Cited By