Intersectional targeting of defined neural circuits by adeno-associated virus vectors.

Chase A Weinholtz, Michael J Castle
Author Information
  1. Chase A Weinholtz: Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA. ORCID
  2. Michael J Castle: Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA. ORCID

Abstract

The mammalian nervous system is a complex network of interconnected cells. We review emerging techniques that use the axonal transport of adeno-associated virus (AAV) vectors to dissect neural circuits. These intersectional approaches specifically target AAV-mediated gene expression to discrete neuron populations based on their axonal connectivity, including: (a) neurons with one defined output, (b) neurons with one defined input, (c) neurons with one defined input and one defined output, and (d) neurons with two defined inputs or outputs. The number of labeled neurons can be directly controlled to trace axonal projections and examine cellular morphology. These approaches can precisely target the expression of fluorescent reporters, optogenetic ion channels, chemogenetic receptors, disease-associated proteins, and other factors to defined neural circuits in mammals ranging from mice to macaques, and thereby provide a powerful new means to understand the structure and function of the nervous system.

Keywords

References

  1. J Neurosci. 2007 Sep 12;27(37):9928-40 [PMID: 17855607]
  2. Methods Mol Biol. 2019;1950:165-176 [PMID: 30783973]
  3. J Neurochem. 2019 Aug;150(3):330-340 [PMID: 30748001]
  4. Nat Methods. 2018 Dec;15(12):1033-1036 [PMID: 30455464]
  5. Gene Ther. 2015 Apr;22(4):316-24 [PMID: 25588740]
  6. Microbiol Immunol. 2005;49(6):559-70 [PMID: 15965304]
  7. J Neurosci. 2020 Apr 15;40(16):3250-3267 [PMID: 32198185]
  8. Neuron. 2011 Dec 22;72(6):938-50 [PMID: 22196330]
  9. Cell. 2015 Jul 30;162(3):622-34 [PMID: 26232228]
  10. Nature. 2014 Apr 17;508(7496):357-63 [PMID: 24487617]
  11. Front Synaptic Neurosci. 2020 Feb 14;12:6 [PMID: 32116642]
  12. Science. 1965 Aug 13;149(3685):754-6 [PMID: 14325163]
  13. Nat Rev Drug Discov. 2018 Sep;17(9):641-659 [PMID: 30093643]
  14. Neuron. 2017 Jan 4;93(1):33-47 [PMID: 27989459]
  15. Proc Natl Acad Sci U S A. 2001 Jul 31;98(16):9209-14 [PMID: 11481484]
  16. Nature. 2007 Nov 1;450(7166):56-62 [PMID: 17972876]
  17. Hum Gene Ther. 2014 Aug;25(8):705-20 [PMID: 24694006]
  18. Neurobiol Stress. 2020 Aug 01;13:100247 [PMID: 33344702]
  19. Cell Rep. 2019 Jan 2;26(1):159-167.e6 [PMID: 30605672]
  20. Neuron. 2018 Feb 21;97(4):911-924.e5 [PMID: 29398361]
  21. Nat Neurosci. 2010 Jan;13(1):133-40 [PMID: 20023653]
  22. Nat Genet. 1994 Oct;8(2):148-54 [PMID: 7842013]
  23. Nat Protoc. 2010 Mar;5(3):439-56 [PMID: 20203662]
  24. J Neurovirol. 2002 Apr;8(2):122-35 [PMID: 11935464]
  25. Proc Natl Acad Sci U S A. 1988 Jul;85(14):5166-70 [PMID: 2839833]
  26. Neuron. 2016 Oct 19;92(2):372-382 [PMID: 27720486]
  27. Mol Ther. 2002 Jan;5(1):50-6 [PMID: 11786045]
  28. Mol Brain. 2020 Oct 27;13(1):144 [PMID: 33109226]
  29. Sci Rep. 2020 Apr 24;10(1):6970 [PMID: 32332773]
  30. Nat Neurosci. 2017 Aug;20(8):1172-1179 [PMID: 28671695]
  31. Nat Methods. 2013 Nov;10(11):1085-8 [PMID: 24056874]
  32. Proc Natl Acad Sci U S A. 2019 Dec 26;116(52):27053-27062 [PMID: 31818949]
  33. Front Neural Circuits. 2014 Jul 10;8:76 [PMID: 25071457]
  34. Nat Neurosci. 2020 Jul;23(7):869-880 [PMID: 32483349]
  35. Brain Res. 1989 Jul 3;491(1):156-62 [PMID: 2569907]
  36. Exp Neurobiol. 2020 Jun 30;29(3):219-229 [PMID: 32624506]
  37. Neuron. 2019 Mar 6;101(5):839-862 [PMID: 30844402]
  38. J Virol. 2004 Jun;78(12):6381-8 [PMID: 15163731]
  39. Cell Rep. 2016 Apr 26;15(4):692-699 [PMID: 27149846]
  40. Nat Methods. 2007 Jan;4(1):47-9 [PMID: 17179932]
  41. Hum Gene Ther. 1999 Sep 20;10(14):2295-305 [PMID: 10515449]
  42. Proc Natl Acad Sci U S A. 2019 Dec 26;116(52):27001-27010 [PMID: 31843925]
  43. Sci Adv. 2018 Nov 14;4(11):eaau9859 [PMID: 30443600]
  44. Nat Neurosci. 2019 Aug;22(8):1248-1257 [PMID: 31346295]
  45. Front Neurosci. 2019 Aug 27;13:897 [PMID: 31507369]
  46. Nature. 2014 Apr 10;508(7495):207-14 [PMID: 24695228]
  47. Elife. 2020 Aug 14;9: [PMID: 32795386]
  48. J Virol. 1998 May;72(5):4434-41 [PMID: 9557737]
  49. Mol Ther. 2014 Mar;22(3):554-566 [PMID: 24100640]
  50. Nat Methods. 2013 Jun;10(6):540-7 [PMID: 23866336]
  51. Nat Methods. 2014 Jul;11(7):763-72 [PMID: 24908100]
  52. Nat Neurosci. 2016 Aug;19(8):1085-92 [PMID: 27322420]
  53. Cell. 1996 Dec 27;87(7):1317-26 [PMID: 8980237]
  54. Mol Neurodegener. 2017 May 12;12(1):38 [PMID: 28499404]

Grants

  1. R01 AG066080/NIA NIH HHS
  2. AG066080/NIH HHS

MeSH Term

Animals
Axonal Transport
Dependovirus
Gene Expression
Gene Transfer Techniques
Genetic Vectors
Humans
Integrases
Neural Pathways
Neurons
Optogenetics
Synapses

Chemicals

Cre recombinase
Integrases

Word Cloud

Created with Highcharts 10.0.0definedneuronsaxonalneuralcircuitsonenervoussystemtransportadeno-associatedvirusAAVvectorsintersectionalapproachestargetexpressionoutputinputcanmammaliancomplexnetworkinterconnectedcellsreviewemergingtechniquesusedissectspecificallyAAV-mediatedgenediscreteneuronpopulationsbasedconnectivityincluding:bcdtwoinputsoutputsnumberlabeleddirectlycontrolledtraceprojectionsexaminecellularmorphologypreciselyfluorescentreportersoptogeneticionchannelschemogeneticreceptorsdisease-associatedproteinsfactorsmammalsrangingmicemacaquestherebyprovidepowerfulnewmeansunderstandstructurefunctionIntersectionaltargetinganterograderetrograde

Similar Articles

Cited By