A Potential Mechanism of Sodium Channel Mediating the General Anesthesia Induced by Propofol.

Jinglei Xiao, Zhengguo Chen, Buwei Yu
Author Information
  1. Jinglei Xiao: Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
  2. Zhengguo Chen: College of Computer, National University of Defence Technology, Changsha, China.
  3. Buwei Yu: Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

Abstract

General anesthesia has revolutionized healthcare over the past 200 years and continues to show advancements. However, many phenomena induced by general anesthetics including paradoxical excitation are still poorly understood. Voltage-gated sodium channels (Na ) were believed to be one of the proteins targeted during general anesthesia. Based on electrophysiological measurements before and after propofol treatments of different concentrations, we mathematically modified the Hodgkin-Huxley sodium channel formulations and constructed a thalamocortical model to investigate the potential roles of Na . The ion channels of individual neurons were modeled using the Hodgkin-Huxley type equations. The enhancement of propofol-induced GABAa current was simulated by increasing the maximal conductance and the time-constant of decay. Electroencephalogram (EEG) was evaluated as the post-synaptic potential from pyramidal (PY) cells. We found that a left shift in activation of Na was induced primarily by a low concentration of propofol (0.3-10 μM), while a left shift in inactivation of Na was induced by an increasing concentration (0.3-30 μM). Mathematical simulation indicated that a left shift of Na activation produced a Hopf bifurcation, leading to cell oscillations. Left shift of Na activation around a value of 5.5 mV in the thalamocortical models suppressed normal bursting of thalamocortical (TC) cells by triggering its chaotic oscillations. This led to irregular spiking of PY cells and an increased frequency in EEG readings. This observation suggests a mechanism leading to paradoxical excitation during general anesthesia. While a left shift in inactivation led to light hyperpolarization in individual cells, it inhibited the activity of the thalamocortical model after a certain depth of anesthesia. This finding implies that high doses of propofol inhibit the network partly by accelerating Na toward inactivation. Additionally, this result explains why the application of sodium channel blockers decreases the requirement for general anesthetics. Our study provides an insight into the roles that Na plays in the mechanism of general anesthesia. Since the activation and inactivation of Na are structurally independent, it should be possible to avoid side effects by state-dependent binding to the Na to achieve precision medicine in the future.

Keywords

References

  1. Curr Top Membr. 2016;78:145-82 [PMID: 27586284]
  2. Anesthesiology. 2007 Jul;107(1):91-8 [PMID: 17585220]
  3. Comput Math Methods Med. 2014;2014:761907 [PMID: 25104970]
  4. Handb Exp Pharmacol. 2014;221:269-91 [PMID: 24737241]
  5. J Comput Neurosci. 2009 Dec;27(3):493-506 [PMID: 19499317]
  6. PLoS Comput Biol. 2018 Feb 12;14(2):e1005960 [PMID: 29432418]
  7. J Comput Neurosci. 2012 Oct;33(2):301-19 [PMID: 22476614]
  8. J Gen Physiol. 2017 Apr 3;149(4):465-481 [PMID: 28258204]
  9. PLoS One. 2017 Jun 16;12(6):e0179286 [PMID: 28622355]
  10. PLoS Comput Biol. 2018 Nov 26;14(11):e1006605 [PMID: 30475796]
  11. J Clin Monit Comput. 2018 Jun;32(3):533-539 [PMID: 28623471]
  12. Neurochem Res. 2017 Sep;42(9):2495-2504 [PMID: 28589518]
  13. Nat Neurosci. 2009 Aug;12(8):996-1002 [PMID: 19633666]
  14. Front Pharmacol. 2012 Mar 30;3:50 [PMID: 22479247]
  15. Science. 2017 Mar 3;355(6328): [PMID: 28183995]
  16. Eur J Anaesthesiol. 2002 Sep;19(9):634-40 [PMID: 12243285]
  17. BMJ. 1999 Aug 7;319(7206):389 [PMID: 10435984]
  18. Elife. 2020 Feb 26;9: [PMID: 32101161]
  19. Br J Pharmacol. 2011 Sep;164(2b):719-30 [PMID: 21232038]
  20. Trends Neurosci. 1990 May;13(5):161-2 [PMID: 1693231]
  21. Anesth Analg. 1999 Apr;88(4):917-20 [PMID: 10195548]
  22. Nat Commun. 2016 May 17;7:11608 [PMID: 27186888]
  23. Annu Rev Physiol. 2001;63:871-94 [PMID: 11181979]
  24. Curr Opin Neurobiol. 2003 Jun;13(3):284-90 [PMID: 12850212]
  25. Proc Natl Acad Sci U S A. 2010 Dec 28;107(52):22665-70 [PMID: 21149695]
  26. Sci Rep. 2017 Jul 18;7(1):5734 [PMID: 28720769]
  27. Neurobiol Dis. 2014 Jul;67:180-90 [PMID: 24657915]
  28. Nature. 1984 Aug 16-22;310(5978):599-601 [PMID: 6462249]
  29. J Med Chem. 2015 Sep 24;58(18):7093-118 [PMID: 25927480]
  30. Cell. 2019 Aug 8;178(4):993-1003.e12 [PMID: 31353218]
  31. PeerJ. 2019 Dec 2;7:e8157 [PMID: 31824770]
  32. Neuron. 2020 Apr 8;106(1):66-75.e12 [PMID: 32053769]
  33. J Gen Physiol. 2018 Sep 3;150(9):1317-1331 [PMID: 30018039]
  34. J Comput Neurosci. 2014 Aug;37(1):181-91 [PMID: 24469252]
  35. Anesthesiology. 1997 Oct;87(4):944-51 [PMID: 9357898]
  36. J Biol Chem. 2014 Oct 3;289(40):27456-68 [PMID: 25086038]
  37. J Emerg Med. 2005 Nov;29(4):447-9 [PMID: 16243205]
  38. Phys Rev Lett. 2015 Sep 4;115(10):108103 [PMID: 26382705]
  39. Mol Pharmacol. 2003 Aug;64(2):373-81 [PMID: 12869642]
  40. BMC Anesthesiol. 2016 Apr 21;16:24 [PMID: 27106691]
  41. Proc Natl Acad Sci U S A. 2016 Nov 29;113(48):13762-13767 [PMID: 27856739]
  42. Br J Anaesth. 2001 Sep;87(3):421-8 [PMID: 11517126]
  43. Sci Am. 1991 Feb;264(2):78-85 [PMID: 2000483]
  44. Neurology. 2002 May 14;58(9):1327-32 [PMID: 12017156]
  45. Br J Anaesth. 2015 Jul;115 Suppl 1:i27-i31 [PMID: 26174297]
  46. Channels (Austin). 2010 Sep-Oct;4(5):422-8 [PMID: 20935453]
  47. Epilepsia. 2013 Sep;54(9):e117-21 [PMID: 23758435]
  48. PLoS Comput Biol. 2011 Oct;7(10):e1002248 [PMID: 22046121]
  49. Proc Natl Acad Sci U S A. 2014 May 6;111(18):6726-31 [PMID: 24753583]
  50. Front Neuroinform. 2018 Mar 15;12:10 [PMID: 29599715]
  51. Protein Cell. 2019 Sep;10(9):688-693 [PMID: 31028590]
  52. Neuron. 2016 Nov 23;92(4):687-704 [PMID: 27883901]
  53. Science. 2018 Oct 19;362(6412): [PMID: 30190309]
  54. Science. 2001 Dec 14;294(5550):2372-5 [PMID: 11743207]
  55. Nat Chem Biol. 2013 Nov;9(11):715-20 [PMID: 24056400]
  56. Elife. 2016 Nov 16;5: [PMID: 27849520]
  57. Cell Rep. 2019 Feb 5;26(6):1443-1457.e5 [PMID: 30726730]
  58. PLoS Comput Biol. 2012;8(9):e1002664 [PMID: 23028273]
  59. J Neurosci. 2008 Dec 10;28(50):13488-504 [PMID: 19074022]
  60. Biol Cybern. 2008 Nov;99(4-5):427-41 [PMID: 19011929]
  61. Anesthesiology. 1985 Apr;62(4):396-405 [PMID: 2580463]
  62. Neuron. 2004 Mar 4;41(5):737-44 [PMID: 15003173]
  63. Proc Natl Acad Sci U S A. 2017 Aug 8;114(32):E6660-E6668 [PMID: 28743752]
  64. Biochem (Mosc) Suppl Ser A Membr Cell Biol. 2012 Apr;6(2):120-127 [PMID: 23710324]
  65. Biophys J. 1999 Apr;76(4):1868-85 [PMID: 10096885]
  66. Br J Anaesth. 2010 Oct;105(4):471-9 [PMID: 20650919]
  67. Anesthesiology. 1999 Aug;91(2):512-20 [PMID: 10443615]
  68. Scand J Gastroenterol. 2019 Mar;54(3):371-376 [PMID: 30931652]
  69. Biol Cybern. 2001 Jul;85(1):51-64 [PMID: 11471840]
  70. Front Comput Neurosci. 2017 Jun 12;11:48 [PMID: 28659782]
  71. J Gen Physiol. 2017 Jun 5;149(6):623-638 [PMID: 28416648]
  72. J Gen Physiol. 2018 Sep 3;150(9):1299-1316 [PMID: 30018038]
  73. Brain. 2019 Aug 1;142(8):2288-2302 [PMID: 31236577]
  74. Br J Anaesth. 2004 Feb;92(2):242-5 [PMID: 14722177]
  75. Anesthesiology. 2015 Mar;122(3):571-84 [PMID: 25321870]
  76. J Theor Biol. 2016 Jun 21;399:92-102 [PMID: 27059892]
  77. Br J Anaesth. 2011 Dec;107(6):930-3 [PMID: 21903640]
  78. Biophys J. 2005 Jul;89(1):232-42 [PMID: 15849254]
  79. Br J Anaesth. 2002 Dec;89(6):849-52 [PMID: 12453928]
  80. Neuron. 2006 Feb 2;49(3):421-32 [PMID: 16446145]
  81. J Gen Physiol. 2012 Jun;139(6):507-16 [PMID: 22641643]
  82. J Neurophysiol. 1998 Feb;79(2):999-1016 [PMID: 9463458]

Word Cloud

Created with Highcharts 10.0.0NaanesthesiageneralthalamocorticalshiftsodiumpropofolmodelcellsleftactivationinactivationinducedparadoxicalexcitationchannelsGeneralanestheticsHodgkin-HuxleychannelpotentialrolesindividualincreasingEEGPYconcentration0μMHopfbifurcationleadingoscillations5ledmechanismrevolutionizedhealthcarepast200yearscontinuesshowadvancementsHowevermanyphenomenaincludingstillpoorlyunderstoodVoltage-gatedbelievedoneproteinstargetedBasedelectrophysiologicalmeasurementstreatmentsdifferentconcentrationsmathematicallymodifiedformulationsconstructedinvestigateionneuronsmodeledusingtypeequationsenhancementpropofol-inducedGABAacurrentsimulatedmaximalconductancetime-constantdecayElectroencephalogramevaluatedpost-synapticpyramidalfoundprimarilylow3-103-30MathematicalsimulationindicatedproducedcellLeftaroundvaluemVmodelssuppressednormalburstingTCtriggeringchaoticirregularspikingincreasedfrequencyreadingsobservationsuggestslighthyperpolarizationinhibitedactivitycertaindepthfindingimplieshighdosesinhibitnetworkpartlyacceleratingtowardAdditionallyresultexplainsapplicationblockersdecreasesrequirementstudyprovidesinsightplaysSincestructurallyindependentpossibleavoidsideeffectsstate-dependentbindingachieveprecisionmedicinefuturePotentialMechanismSodiumChannelMediatingAnesthesiaInducedPropofolHodgkin–Huxleyvoltage-gated

Similar Articles

Cited By