Induction of the Operon Encoding the Quinol Oxidase Under Respiration-Inhibitory Conditions by the Major cAMP Receptor Protein MSMEG_6189 in .

Eon-Min Ko, Jeong-Il Oh
Author Information
  1. Eon-Min Ko: Department of Integrated Biological Science, Pusan National University, Busan, South Korea.
  2. Jeong-Il Oh: Department of Integrated Biological Science, Pusan National University, Busan, South Korea.

Abstract

The respiratory electron transport chain (ETC) of is terminated with two terminal oxidases, the cytochrome oxidase and the cytochrome quinol oxidase. The quinol oxidase with a higher binding affinity for O than the oxidase is known to play an important role in aerobic respiration under oxygen-limiting conditions. Using relevant () and () mutant strains of , we demonstrated that Crp1 plays a predominant role in induction of the operon under ETC-inhibitory conditions. Two Crp-binding sequences were identified upstream of the gene, both of which are necessary for induction of expression under ETC-inhibitory conditions. The intracellular level of cAMP in was found to be increased under ETC-inhibitory conditions. The gene was found to be negatively regulated by Crp1 and Crp2, which appears to lead to significantly low cellular abundance of Crp2 relative to Crp1 in . Our RNA sequencing analyses suggest that in addition to the SigF partner switching system, Crp1 is involved in induction of gene expression in exposed to ETC-inhibitory conditions.

Keywords

References

  1. Biochemistry. 1991 Apr 23;30(16):3936-42 [PMID: 1850294]
  2. J Bacteriol. 2018 Jun 25;200(14): [PMID: 29712875]
  3. FEBS Lett. 2004 Oct 8;576(1-2):201-4 [PMID: 15474037]
  4. J Bacteriol. 1989 May;171(5):2909-12 [PMID: 2540158]
  5. Nat Commun. 2014 Feb 26;5:3369 [PMID: 24569628]
  6. BMC Genomics. 2019 Dec 7;20(1):942 [PMID: 31810444]
  7. J Bacteriol. 2003 Mar;185(5):1543-54 [PMID: 12591871]
  8. J Bacteriol. 1977 Dec;132(3):1031-3 [PMID: 200600]
  9. Microbiology (Reading). 2015 Mar;161(Pt 3):648-61 [PMID: 25525207]
  10. J Bacteriol. 2005 Sep;187(18):6300-8 [PMID: 16159762]
  11. J Mol Biol. 1999 Oct 22;293(2):199-213 [PMID: 10550204]
  12. Front Microbiol. 2020 Nov 11;11:588487 [PMID: 33304334]
  13. Mol Gen Genet. 1991 Apr;226(1-2):209-13 [PMID: 1851949]
  14. J Bacteriol. 2004 Jul;186(14):4585-95 [PMID: 15231791]
  15. FEBS Lett. 2013 Jul 11;587(14):2214-8 [PMID: 23727202]
  16. Sci Rep. 2017 Sep 6;7(1):10665 [PMID: 28878275]
  17. J Bacteriol. 2014 Sep;196(17):3091-7 [PMID: 24936051]
  18. PLoS One. 2014 Nov 03;9(11):e111680 [PMID: 25365321]
  19. Curr Opin Microbiol. 2014 Apr;18:1-7 [PMID: 24509484]
  20. J Bacteriol. 1996 Feb;178(4):1094-8 [PMID: 8576043]
  21. mBio. 2013 Sep 17;4(5):e00475-13 [PMID: 24045640]
  22. EMBO J. 2003 Sep 15;22(18):4856-65 [PMID: 12970197]
  23. J Bacteriol. 2010 Feb;192(3):746-54 [PMID: 19933363]
  24. Science. 2001 Jun 22;292(5525):2314-6 [PMID: 11423658]
  25. Front Cell Infect Microbiol. 2014 Oct 20;4:146 [PMID: 25368845]
  26. J Bacteriol. 2008 Oct;190(20):6795-804 [PMID: 18708494]
  27. Proc Natl Acad Sci U S A. 2020 Mar 24;117(12):6663-6674 [PMID: 32139610]
  28. J Bacteriol. 1990 Nov;172(11):6333-8 [PMID: 2172211]
  29. Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15629-34 [PMID: 16227431]
  30. Nat Commun. 2020 Jan 28;11(1):557 [PMID: 31992699]
  31. Antonie Van Leeuwenhoek. 2000 Jul;78(1):23-31 [PMID: 11016692]
  32. FEMS Microbiol Lett. 1992 Feb 1;70(1):31-6 [PMID: 1315704]
  33. J Biol Chem. 2010 Mar 5;285(10):7016-27 [PMID: 20028978]
  34. Sci Rep. 2019 Jun 13;9(1):8608 [PMID: 31197236]
  35. Trends Microbiol. 2006 Dec;14(12):543-50 [PMID: 17055275]
  36. Proc Natl Acad Sci U S A. 2004 Sep 7;101(36):13318-23 [PMID: 15326287]
  37. Mol Microbiol. 2005 Jun;56(5):1274-86 [PMID: 15882420]
  38. J Bacteriol. 2001 Dec;183(24):7076-86 [PMID: 11717265]
  39. FEMS Microbiol Rev. 1998 Dec;22(5):341-52 [PMID: 9990723]
  40. Microbiology (Reading). 2005 Oct;151(Pt 10):3323-3335 [PMID: 16207915]
  41. FEBS Lett. 2005 Aug 29;579(21):4567-70 [PMID: 16087180]
  42. FEMS Microbiol Lett. 2002 Jun 4;211(2):231-7 [PMID: 12076818]
  43. Biochemistry. 1999 Mar 2;38(9):2688-96 [PMID: 10052939]
  44. PLoS One. 2011;6(6):e20081 [PMID: 21673794]
  45. Microbiologyopen. 2015 Dec;4(6):896-916 [PMID: 26434659]
  46. Proc Natl Acad Sci U S A. 2014 Aug 5;111(31):11479-84 [PMID: 25049411]
  47. Biochim Biophys Acta. 2011 Nov;1807(11):1398-413 [PMID: 21756872]
  48. Indian J Biochem Biophys. 1976 Dec;13(4):413-4 [PMID: 192667]
  49. Microbiology (Reading). 2006 Mar;152(Pt 3):823-829 [PMID: 16514162]
  50. Bioinformatics. 2010 Jan 1;26(1):139-40 [PMID: 19910308]
  51. FEBS Lett. 2012 Mar 9;586(5):622-9 [PMID: 21821033]
  52. Mol Microbiol. 2018 Jun;108(6):661-682 [PMID: 29569300]
  53. J Bacteriol. 2010 Oct;192(19):4868-75 [PMID: 20675480]
  54. J Bacteriol. 1998 Nov;180(21):5612-8 [PMID: 9791109]
  55. Microbiol Spectr. 2014 Jun;2(3): [PMID: 25346874]
  56. mBio. 2016 Dec 20;7(6): [PMID: 27999164]
  57. Cell Microbiol. 2011 Mar;13(3):349-58 [PMID: 21199259]
  58. Biochim Biophys Acta. 2014 Jul;1837(7):1178-87 [PMID: 24486503]
  59. Sci Rep. 2016 Mar 31;6:23788 [PMID: 27030302]
  60. Prog Biophys Mol Biol. 2020 May;152:55-63 [PMID: 31738981]
  61. Nat Chem Biol. 2009 Feb;5(2):94-6 [PMID: 19109594]
  62. Curr Opin Struct Biol. 2004 Feb;14(1):10-20 [PMID: 15102444]
  63. Mol Microbiol. 1997 May;24(3):579-91 [PMID: 9179851]
  64. Biochemistry. 2007 Oct 2;46(39):11177-84 [PMID: 17784736]
  65. J Bacteriol. 2005 Nov;187(22):7795-804 [PMID: 16267303]
  66. Mol Microbiol. 1990 Nov;4(11):1911-9 [PMID: 2082148]
  67. J Biol Chem. 2006 Mar 10;281(10):6768-75 [PMID: 16407278]
  68. mBio. 2010 Dec 14;1(5): [PMID: 21157513]
  69. Mol Microbiol. 1997 Aug;25(3):605-15 [PMID: 9302022]
  70. Front Microbiol. 2019 Mar 26;10:591 [PMID: 30984135]
  71. J Bacteriol. 2006 Oct;188(20):7062-71 [PMID: 17015645]
  72. Biochemistry. 2014 Dec 16;53(49):7765-76 [PMID: 25434596]

Word Cloud

Created with Highcharts 10.0.0oxidaseconditionsCrp1ETC-inhibitorygenecytochromeinductionexpressioncAMPelectrontransportchainquinolrolerespirationfoundCrp2respiratoryETCterminatedtwoterminaloxidaseshigherbindingaffinityOknownplayimportantaerobicoxygen-limitingUsingrelevantmutantstrainsdemonstratedplayspredominantoperonTwoCrp-bindingsequencesidentifiedupstreamnecessaryintracellularlevelincreasednegativelyregulatedappearsleadsignificantlylowcellularabundancerelativeRNAsequencinganalysessuggestadditionSigFpartnerswitchingsysteminvolvedexposedInductionOperonEncodingQuinolOxidaseRespiration-InhibitoryConditionsMajorReceptorProteinMSMEG_6189CrpMycobacteriumaa3cregulation

Similar Articles

Cited By