Design and Testing of a Cabotegravir Implant for HIV Prevention.

Dipu Karunakaran, Solange M Simpson, Jonathan T Su, Ewa Bryndza-Tfaily, Thomas J Hope, Ronald Veazey, Georgina Dobek, Jiang Qiu, David Watrous, Samuel Sung, Jorge E Chacon, Patrick F Kiser
Author Information
  1. Dipu Karunakaran: Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA.
  2. Solange M Simpson: Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA.
  3. Jonathan T Su: Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA; Department of Physics and Engineering, Elon University, Elon, NC, USA.
  4. Ewa Bryndza-Tfaily: Department of Cell and Developmental Biology, Northwestern University, Chicago, IL, USA.
  5. Thomas J Hope: Department of Cell and Developmental Biology, Northwestern University, Chicago, IL, USA.
  6. Ronald Veazey: Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, USA.
  7. Georgina Dobek: Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, USA; Tulane University School of Medicine, New Orleans, LA, USA.
  8. Jiang Qiu: Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA.
  9. David Watrous: Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA.
  10. Samuel Sung: Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA.
  11. Jorge E Chacon: Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA.
  12. Patrick F Kiser: Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA. Electronic address: patrick.kiser@northwestern.edu.

Abstract

Long-acting antiretroviral implants could help protect high-risk individuals from HIV infection. We describe the design and testing of a long-acting reservoir subcutaneous implant capable of releasing cabotegravir for several months. We compressed cabotegravir and excipients into cylindrical pellets and heat-sealed them in tubing composed of hydrophilic poly(ether-urethane) -. The implants have a 47 mm lumen length, 3.6 mm outer diameter, and 200 μm wall thickness. Four cabotegravir pellets were sealed in the membrane, with a total drug loading of 274 ± 3 mg. In vivo, the implants released 348 ± 107 μg/day (median value per implant, N = 41) of cabotegravir in rhesus macaques. Five implants generated an average cabotegravir plasma concentration of 373 ng/ml in rhesus macaques. The non-human primates tolerated the implant without gross pathology or microscopic signs of histopathology compared to placebo implants. Cabotegravir plasma levels in macaques dropped below detectable levels within two weeks after the removal of the implants.

Keywords

References

  1. Pharm Res. 1998 Jun;15(6):889-96 [PMID: 9647355]
  2. Lancet Infect Dis. 2020 Jul;20(7):781 [PMID: 32592669]
  3. HIV AIDS (Auckl). 2015 Oct 13;7:241-9 [PMID: 26508889]
  4. J Control Release. 2018 Sep 28;286:315-325 [PMID: 30092254]
  5. Lancet. 2017 Sep 23;390(10101):1499-1510 [PMID: 28750935]
  6. Antimicrob Agents Chemother. 2012 Dec;56(12):6272-83 [PMID: 23006751]
  7. Antimicrob Agents Chemother. 2018 Sep 24;62(10): [PMID: 30012772]
  8. Contraception. 2011 May;83(5):397-404 [PMID: 21477680]
  9. Sci Transl Med. 2015 Jan 14;7(270):270ra4 [PMID: 25589630]
  10. Lancet HIV. 2020 Mar;7(3):e164-e172 [PMID: 31911147]
  11. Antimicrob Agents Chemother. 2020 Feb 21;64(3): [PMID: 31871073]
  12. Annu Rev Med. 2019 Jan 27;70:137-150 [PMID: 30355266]
  13. J Acquir Immune Defic Syndr. 2014 Dec 15;67(5):481-6 [PMID: 25140909]
  14. Pharmaceutics. 2018 May 09;10(2): [PMID: 29747409]
  15. Curr Opin HIV AIDS. 2015 Jul;10(4):246-52 [PMID: 26049949]
  16. Curr Opin HIV AIDS. 2015 Jul;10(4):258-63 [PMID: 26049951]
  17. JAMA. 2019 Mar 5;321(9):844-845 [PMID: 30730529]
  18. HIV Clin Trials. 2013 Sep-Oct;14(5):192-203 [PMID: 24144896]
  19. J Control Release. 2019 Jul 28;306:89-96 [PMID: 31136811]
  20. Eur J Drug Metab Pharmacokinet. 2019 Jun;44(3):319-327 [PMID: 30387005]
  21. J Tissue Eng Regen Med. 2007 Mar-Apr;1(2):110-9 [PMID: 18038399]
  22. Pharm Res. 2016 Jul;33(7):1649-56 [PMID: 26975357]
  23. Clin Pharmacol Drug Dev. 2019 May;8(4):443-448 [PMID: 30230694]
  24. Pharmaceutics. 2019 Jul 04;11(7): [PMID: 31277461]
  25. Expert Rev Clin Pharmacol. 2018 May;11(5):507-517 [PMID: 29595351]
  26. J Med Chem. 2013 Jul 25;56(14):5901-16 [PMID: 23845180]
  27. Science. 2014 Mar 7;343(6175):1151-4 [PMID: 24594934]
  28. BMC Infect Dis. 2018 Nov 16;18(1):581 [PMID: 30445925]
  29. AIDS Behav. 2017 May;21(5):1336-1349 [PMID: 27770215]
  30. Curr Opin HIV AIDS. 2015 Jul;10(4):239-45 [PMID: 26049948]
  31. Curr HIV/AIDS Rep. 2017 Apr;14(2):63-71 [PMID: 28303548]
  32. N Engl J Med. 2005 Aug 4;353(5):487-97 [PMID: 16079372]
  33. Antimicrob Agents Chemother. 2015 Jan;59(1):397-406 [PMID: 25367908]
  34. Nat Methods. 2012 Jul;9(7):671-5 [PMID: 22930834]
  35. Pharm Res. 2020 Apr 15;37(4):83 [PMID: 32296951]
  36. Antimicrob Agents Chemother. 2015 Jul;59(7):3913-9 [PMID: 25896688]

Grants

  1. P51 OD011104/NIH HHS
  2. R01 AI131433/NIAID NIH HHS
  3. UM1 AI120184/NIAID NIH HHS

MeSH Term

Animals
Anti-HIV Agents
HIV Infections
HIV-1
Macaca mulatta
Pyridones

Chemicals

Anti-HIV Agents
Pyridones
cabotegravir