Predicting substitutions to modulate disorder and stability in coiled-coils.

Yasaman Karami, Paul Saighi, Rémy Vanderhaegen, Denis Gerlier, Sonia Longhi, Elodie Laine, Alessandra Carbone
Author Information
  1. Yasaman Karami: CNRS, IBPS, UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative (LCQB), Sorbonne Université, 75005, Paris, France. yasaman.karami@pasteur.fr.
  2. Paul Saighi: CNRS, IBPS, UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative (LCQB), Sorbonne Université, 75005, Paris, France.
  3. Rémy Vanderhaegen: CNRS, IBPS, UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative (LCQB), Sorbonne Université, 75005, Paris, France.
  4. Denis Gerlier: CIRI, International Center for Infectiology Research, INSERM, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, Lyon, France.
  5. Sonia Longhi: CNRS, Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257, Aix-Marseille University, Marseille, France.
  6. Elodie Laine: CNRS, IBPS, UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative (LCQB), Sorbonne Université, 75005, Paris, France. elodie.laine@upmc.fr.
  7. Alessandra Carbone: CNRS, IBPS, UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative (LCQB), Sorbonne Université, 75005, Paris, France. alessandra.carbone@lip6.fr. ORCID

Abstract

BACKGROUND: Coiled-coils are described as stable structural motifs, where two or more helices wind around each other. However, coiled-coils are associated with local mobility and intrinsic disorder. Intrinsically disordered regions in proteins are characterized by lack of stable secondary and tertiary structure under physiological conditions in vitro. They are increasingly recognized as important for protein function. However, characterizing their behaviour in solution and determining precisely the extent of disorder of a protein region remains challenging, both experimentally and computationally.
RESULTS: In this work, we propose a computational framework to quantify the extent of disorder within a coiled-coil in solution and to help design substitutions modulating such disorder. Our method relies on the analysis of conformational ensembles generated by relatively short all-atom Molecular Dynamics (MD) simulations. We apply it to the phosphoprotein multimerisation domains (PMD) of Measles virus (MeV) and Nipah virus (NiV), both forming tetrameric left-handed coiled-coils. We show that our method can help quantify the extent of disorder of the C-terminus region of MeV and NiV PMDs from MD simulations of a few tens of nanoseconds, and without requiring an extensive exploration of the conformational space. Moreover, this study provided a conceptual framework for the rational design of substitutions aimed at modulating the stability of the coiled-coils. By assessing the impact of four substitutions known to destabilize coiled-coils, we derive a set of rules to control MeV PMD structural stability and cohesiveness. We therefore design two contrasting substitutions, one increasing the stability of the tetramer and the other increasing its flexibility.
CONCLUSIONS: Our method can be considered as a platform to reason about how to design substitutions aimed at regulating flexibility and stability.

Keywords

References

  1. Biochemistry. 2006 Sep 26;45(38):11324-32 [PMID: 16981692]
  2. Proc Natl Acad Sci U S A. 2016 Aug 23;113(34):9515-20 [PMID: 27512043]
  3. J Virol. 2014 Jan;88(1):758-62 [PMID: 24155387]
  4. Curr Opin Virol. 2012 Apr;2(2):176-87 [PMID: 22482714]
  5. J Mol Biol. 2008 Jul 18;380(4):742-56 [PMID: 18547585]
  6. Sci Adv. 2019 May 08;5(5):eaaw3702 [PMID: 31086822]
  7. J Biol Chem. 2003 Nov 7;278(45):44567-73 [PMID: 12944395]
  8. Cell Mol Life Sci. 2017 Sep;74(17):3091-3118 [PMID: 28600653]
  9. Science. 2010 Oct 15;330(6002):341-6 [PMID: 20947758]
  10. Bioinformatics. 2005 Aug 15;21(16):3433-4 [PMID: 15955779]
  11. J Virol. 2020 Feb 28;94(6): [PMID: 31852780]
  12. J Mol Biol. 2010 Oct 29;403(3):480-93 [PMID: 20813113]
  13. J Virol. 2013 Jun;87(12):7166-9 [PMID: 23576502]
  14. J Phys Chem B. 2018 Apr 12;122(14):3920-3930 [PMID: 29595057]
  15. Trends Biochem Sci. 2017 Feb;42(2):130-140 [PMID: 27884598]
  16. Science. 1991 May 24;252(5009):1162-4 [PMID: 2031185]
  17. Acta Crystallogr D Biol Crystallogr. 2005 Apr;61(Pt 4):477-80 [PMID: 15805603]
  18. J Biol Chem. 2011 Apr 15;286(15):13583-602 [PMID: 21317293]
  19. PLoS One. 2010 Jul 21;5(7):e11684 [PMID: 20657787]
  20. J Gen Virol. 2003 Dec;84(Pt 12):3239-3252 [PMID: 14645906]
  21. Science. 2015 May 8;348(6235):704-7 [PMID: 25883315]
  22. Nucleic Acids Res. 2000 Jan 1;28(1):235-42 [PMID: 10592235]
  23. Biopolymers. 1992 May;32(5):523-35 [PMID: 1515543]
  24. Acta Crystallogr D Biol Crystallogr. 2014 Jun;70(Pt 6):1589-603 [PMID: 24914970]
  25. J Virol. 2020 Jun 16;94(13): [PMID: 32321813]
  26. Virology. 2002 May 10;296(2):251-62 [PMID: 12069524]
  27. Bioinformatics. 2004 Sep 1;20(13):2138-9 [PMID: 15044227]
  28. Biopolymers. 1983 Dec;22(12):2577-637 [PMID: 6667333]
  29. Sci Rep. 2018 Oct 31;8(1):16126 [PMID: 30382169]
  30. Nat Struct Biol. 2000 Sep;7(9):772-6 [PMID: 10966648]
  31. Biophys J. 2020 May 19;118(10):2470-2488 [PMID: 32348724]
  32. BMC Bioinformatics. 2016 Jan 20;17 Suppl 2:13 [PMID: 26823083]

Grants

  1. ANR-11-LABX-0037-01/Commissariat Général á l'Investissement (FR)
  2. ANR-11-BINF-0003/Commissariat Général à l'Investissement
  3. ANR-11-IDEX-0004-02/Commissariat Général à l'Investissement
  4. ANR-10-EQPX- 29-01/Commissariat Général à l'Investissement

MeSH Term

Amino Acid Sequence
Computational Biology
Measles virus
Molecular Dynamics Simulation
Nipah Virus
Protein Domains
Protein Stability
Protein Structure, Secondary
Viral Proteins

Chemicals

Viral Proteins

Word Cloud

Created with Highcharts 10.0.0disordersubstitutionsstabilitycoiled-coilsdesignProteinextentmethodMeVstablestructuraltwoHoweverstructureproteinsolutionregionframeworkquantifyhelpmodulatingconformationalMolecularMDsimulationsPMDvirusNiVcanaimedincreasingflexibilitydynamicsBACKGROUND:Coiled-coilsdescribedmotifsheliceswindaroundassociatedlocalmobilityintrinsicIntrinsicallydisorderedregionsproteinscharacterizedlacksecondarytertiaryphysiologicalconditionsvitroincreasinglyrecognizedimportantfunctioncharacterizingbehaviourdeterminingpreciselyremainschallengingexperimentallycomputationallyRESULTS:workproposecomputationalwithincoiled-coilreliesanalysisensemblesgeneratedrelativelyshortall-atomDynamicsapplyphosphoproteinmultimerisationdomainsMeaslesNipahformingtetramericleft-handedshowC-terminusPMDstensnanosecondswithoutrequiringextensiveexplorationspaceMoreoverstudyprovidedconceptualrationalassessingimpactfourknowndestabilizederivesetrulescontrolcohesivenessthereforecontrastingonetetramerCONCLUSIONS:consideredplatformreasonregulatingPredictingmodulateCoiled-coil

Similar Articles

Cited By

No available data.