Lenticular nucleus volume predicts performance in real-time strategy game: cross-sectional and training approach using voxel-based morphometry.

Natalia Kowalczyk-Grębska, Maciek Skorko, Paweł Dobrowolski, Bartosz Kossowski, Monika Myśliwiec, Nikodem Hryniewicz, Maciej Gaca, Artur Marchewka, Małgorzata Kossut, Aneta Brzezicka
Author Information
  1. Natalia Kowalczyk-Grębska: Faculty of Psychology, SWPS University of Social Sciences and Humanities, Warsaw, Poland.
  2. Maciek Skorko: Institute of Psychology, Polish Academy of Sciences, Warsaw, Poland.
  3. Paweł Dobrowolski: Institute of Psychology, Polish Academy of Sciences, Warsaw, Poland.
  4. Bartosz Kossowski: Laboratory of Brain Imaging, Neurobiology Center, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.
  5. Monika Myśliwiec: Faculty of Psychology, SWPS University of Social Sciences and Humanities, Warsaw, Poland.
  6. Nikodem Hryniewicz: CNS Lab, Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland.
  7. Maciej Gaca: Laboratory of Brain Imaging, Neurobiology Center, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.
  8. Artur Marchewka: Laboratory of Brain Imaging, Neurobiology Center, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.
  9. Małgorzata Kossut: Laboratory of Neuroplasticity, Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.
  10. Aneta Brzezicka: Faculty of Psychology, SWPS University of Social Sciences and Humanities, Warsaw, Poland.

Abstract

It is unclear why some people learn faster than others. We performed two independent studies in which we investigated the neural basis of real-time strategy (RTS) gaming and neural predictors of RTS game skill acquisition. In the first (cross-sectional) study, we found that experts in the RTS game StarCraft II (SC2) had a larger lenticular nucleus volume (LNV) than non-RTS players. We followed a cross-validation procedure where we used the volume of regions identified in the first study to predict the quality of learning a new, complex skill (SC2) in a sample of individuals who were naive to RTS games (a second (training) study). Our findings provide new insights into how the LNV, which is associated with motor as well as cognitive functions, can be utilized to predict successful skill learning and be applied to a much broader context than just video games, such as contributing to optimizing cognitive training interventions.

Keywords

References

  1. Sci Rep. 2015 Apr 16;5:9763 [PMID: 25880157]
  2. Psychol Res. 2014 Nov;78(6):821-35 [PMID: 24652343]
  3. Neuroimage. 2007 Oct 15;38(1):95-113 [PMID: 17761438]
  4. J Neurosci. 1991 Aug;11(8):2383-402 [PMID: 1869921]
  5. PLoS One. 2017 Nov 15;12(11):e0186621 [PMID: 29141019]
  6. Trends Cogn Sci. 2017 Dec;21(12):930-939 [PMID: 29149999]
  7. Neuroscience. 2018 Jun 1;380:123-131 [PMID: 29673867]
  8. Behav Res Methods. 2009 Nov;41(4):1149-60 [PMID: 19897823]
  9. Front Aging Neurosci. 2019 May 31;11:126 [PMID: 31214015]
  10. J Psychiatr Res. 1975 Nov;12(3):189-98 [PMID: 1202204]
  11. PLoS One. 2011 Jan 14;6(1):e16093 [PMID: 21264257]
  12. Psychol Aging. 1990 Mar;5(1):133-7 [PMID: 2317292]
  13. Brain Sci. 2014 Jun 10;4(2):405-27 [PMID: 24961769]
  14. Nature. 2004 Jan 22;427(6972):311-2 [PMID: 14737157]
  15. Sci Rep. 2019 Nov 21;9(1):17264 [PMID: 31754170]
  16. J Neurophysiol. 1998 Feb;79(2):1070-80 [PMID: 9463462]
  17. Proc Natl Acad Sci U S A. 2005 Aug 30;102(35):12566-71 [PMID: 16107540]
  18. J Neurophysiol. 2003 Dec;90(6):3958-66 [PMID: 12954606]
  19. J Neurosci. 2008 Jul 9;28(28):7031-5 [PMID: 18614670]
  20. Psychol Sci. 2014 Aug;25(8):1608-18 [PMID: 24986855]
  21. Eur J Neurol. 2001 Sep;8(5):425-34 [PMID: 11554905]
  22. Neuroimage. 2013 Jun;73:225-36 [PMID: 22484409]
  23. Front Psychol. 2015 Sep 29;6:1451 [PMID: 26483717]
  24. Proc Natl Acad Sci U S A. 2017 Jan 24;114(4):E600-E609 [PMID: 28069964]
  25. PLoS One. 2013 Sep 18;8(9):e75129 [PMID: 24058656]
  26. J Exp Psychol Appl. 2000 Dec;6(4):259-90 [PMID: 11218338]
  27. Neuroimage. 2009 Jan 1;44(1):99-111 [PMID: 18848632]
  28. Neuroimage. 2010 Jan 1;49(1):759-66 [PMID: 19716894]
  29. Brain Res. 1993 Sep 24;623(1):33-40 [PMID: 8221091]
  30. J Neurosci. 2011 Mar 16;31(11):4213-20 [PMID: 21411662]
  31. Cereb Cortex. 2003 Sep;13(9):943-9 [PMID: 12902393]
  32. PLoS One. 2017 Feb 9;12(2):e0171457 [PMID: 28182712]
  33. Neuroimage. 2002 Jan;15(1):273-89 [PMID: 11771995]
  34. PLoS One. 2015 Apr 27;10(4):e0124222 [PMID: 25915906]
  35. Neuroimage. 2014 Aug 1;96:158-66 [PMID: 24680712]
  36. Hum Brain Mapp. 2018 Sep;39(9):3742-3758 [PMID: 29923660]
  37. Adv Exp Med Biol. 2013;755:343-8 [PMID: 22826085]
  38. Neuroimage Clin. 2016 Mar 04;11:357-367 [PMID: 27298764]
  39. J Neurosci. 2013 Aug 21;33(34):13639-53 [PMID: 23966686]
  40. Nat Neurosci. 2012 Mar 18;15(4):528-36 [PMID: 22426254]
  41. Ann N Y Acad Sci. 2018 Feb 15;: [PMID: 29446457]
  42. PLoS One. 2013 Jul 04;8(7):e68910 [PMID: 23861951]
  43. Front Psychol. 2013 Oct 16;4:713 [PMID: 24137142]
  44. Curr Opin Neurobiol. 1991 Dec;1(4):644-51 [PMID: 1822311]
  45. Brain Struct Funct. 2014 Jan;219(1):353-66 [PMID: 23408267]
  46. Brain Behav. 2017 Dec 16;8(1):e00877 [PMID: 29568680]
  47. Sci Rep. 2018 Jan 18;8(1):1095 [PMID: 29348440]
  48. Front Hum Neurosci. 2017 May 22;11:248 [PMID: 28588464]
  49. Proc Natl Acad Sci U S A. 2000 Apr 11;97(8):4398-403 [PMID: 10716738]
  50. PLoS One. 2013 Jun 11;8(6):e66998 [PMID: 23776706]
  51. J Neurosci. 2017 Mar 15;37(11):2849-2858 [PMID: 28193688]
  52. Neuroreport. 2008 Jun 11;19(9):957-60 [PMID: 18521000]
  53. PLoS One. 2019 Jun 13;14(6):e0218251 [PMID: 31194810]
  54. Dev Sci. 2012 Jul;15(4):496-505 [PMID: 22709399]
  55. Brain Lang. 2019 Oct;197:104661 [PMID: 31376630]
  56. Cereb Cortex. 2015 Jun;25(6):1527-34 [PMID: 24343891]
  57. Brain Cogn. 2011 Aug;76(3):407-14 [PMID: 21546146]
  58. Behav Neurosci. 2007 Jun;121(3):602-13 [PMID: 17592952]
  59. Behav Brain Res. 2018 Nov 1;353:62-73 [PMID: 29944915]
  60. Mol Psychiatry. 2014 Feb;19(2):265-71 [PMID: 24166407]
  61. Neuroscientist. 2012 Aug;18(4):320-5 [PMID: 22013150]
  62. Behav Res Methods. 2005 Aug;37(3):498-505 [PMID: 16405146]
  63. Hum Brain Mapp. 2019 Oct 15;40(15):4316-4330 [PMID: 31264300]
  64. J Neurophysiol. 1998 Oct;80(4):2162-76 [PMID: 9772269]
  65. Cold Spring Harb Perspect Med. 2012 Dec 01;2(12):a009621 [PMID: 23071379]
  66. Front Hum Neurosci. 2019 May 22;13:169 [PMID: 31191276]
  67. Cereb Cortex. 2010 Nov;20(11):2522-30 [PMID: 20089946]
  68. J Neurosci. 1994 Jun;14(6):3775-90 [PMID: 8207487]
  69. Proc Natl Acad Sci U S A. 2011 Feb 15;108(7):3017-22 [PMID: 21282661]
  70. Top Cogn Sci. 2017 Apr;9(2):467-484 [PMID: 28176483]
  71. J Neurol Sci. 2006 Oct 25;248(1-2):68-71 [PMID: 16782131]
  72. Hum Brain Mapp. 2018 Nov;39(11):4393-4403 [PMID: 29956410]
  73. Nat Neurosci. 2008 Jan;11(1):103-7 [PMID: 18066057]
  74. Psychol Bull. 2010 Jul;136(4):659-76 [PMID: 20565172]

MeSH Term

Adult
Cognition
Computer Systems
Corpus Striatum
Cross-Sectional Studies
Humans
Learning
Magnetic Resonance Imaging
Male
Motor Skills
Neuroimaging
Psychomotor Performance
Task Performance and Analysis
Video Games
Young Adult

Word Cloud

Created with Highcharts 10.0.0RTStrainingreal-timestrategygameskillstudyvolumegamesneuralfirstcross-sectionalSC2nucleusLNVpredictlearningnewcognitiveperformanceunclearpeoplelearnfasterothersperformedtwoindependentstudiesinvestigatedbasisgamingpredictorsacquisitionfoundexpertsStarCraftIIlargerlenticularnon-RTSplayersfollowedcross-validationprocedureusedregionsidentifiedqualitycomplexsampleindividualsnaivesecondfindingsprovideinsightsassociatedmotorwellfunctionscanutilizedsuccessfulappliedmuchbroadercontextjustvideocontributingoptimizinginterventionsLenticularpredictsgame:approachusingvoxel-basedmorphometryneuroimaging

Similar Articles

Cited By