Demonstration of a Label-Free and Low-Cost Optical Cavity-Based Biosensor Using Streptavidin and C-Reactive Protein.

Donggee Rho, Seunghyun Kim
Author Information
  1. Donggee Rho: Electrical and Computer Engineering Department, Baylor University, One Bear Place #97356, Waco, TX 76798, USA. ORCID
  2. Seunghyun Kim: Electrical and Computer Engineering Department, Baylor University, One Bear Place #97356, Waco, TX 76798, USA. ORCID

Abstract

An optical cavity-based biosensor (OCB) has been developed for point-of-care (POC) applications. This label-free biosensor employs low-cost components and simple fabrication processes to lower the overall cost while achieving high sensitivity using a differential detection method. To experimentally demonstrate its limit of detection (LOD), we conducted biosensing experiments with streptavidin and C-reactive protein (CRP). The optical cavity structure was optimized further for better sensitivity and easier fluid control. We utilized the polymer swelling property to fine-tune the optical cavity width, which significantly improved the success rate to produce measurable samples. Four different concentrations of streptavidin were tested in triplicate, and the LOD of the OCB was determined to be 1.35 nM. The OCB also successfully detected three different concentrations of human CRP using biotinylated CRP antibody. The LOD for CRP detection was 377 pM. All measurements were done using a small sample volume of 15 µL within 30 min. By reducing the sensing area, improving the functionalization and passivation processes, and increasing the sample volume, the LOD of the OCB are estimated to be reduced further to the femto-molar range. Overall, the demonstrated capability of the OCB in the present work shows great potential to be used as a promising POC biosensor.

Keywords

References

  1. Chem Soc Rev. 2018 Jul 2;47(13):4697-4709 [PMID: 29770813]
  2. Chem Soc Rev. 2017 Jan 23;46(2):366-388 [PMID: 27841420]
  3. Front Chem. 2020 May 27;8:517 [PMID: 32574316]
  4. Biosensors (Basel). 2015 Aug 13;5(3):577-601 [PMID: 26287254]
  5. Essays Biochem. 2016 Jun 30;60(1):111-20 [PMID: 27365041]
  6. Expert Rev Mol Diagn. 2014 Mar;14(2):225-44 [PMID: 24524681]
  7. Biosens Bioelectron. 2011 Aug 15;26(12):4832-6 [PMID: 21700444]
  8. Sensors (Basel). 2019 May 12;19(9): [PMID: 31083614]
  9. Phys Chem Chem Phys. 2010 Sep 21;12(35):10577-83 [PMID: 20607179]
  10. Biosens Bioelectron. 2018 Jan 15;99:122-135 [PMID: 28750336]
  11. Lab Chip. 2017 Dec 5;17(24):4265-4272 [PMID: 29090716]
  12. Biosens Bioelectron. 2019 Apr 1;130:185-203 [PMID: 30738247]
  13. Opt Express. 2018 Jul 23;26(15):18982-18989 [PMID: 30114158]
  14. Biosens Bioelectron. 2009 Jun 15;24(10):3091-6 [PMID: 19403298]
  15. Diagnostics (Basel). 2018 Jun 02;8(2): [PMID: 29865250]
  16. J Anal Methods Chem. 2019 Oct 23;2019:2179718 [PMID: 31886019]
  17. Langmuir. 2012 Jan 10;28(1):416-23 [PMID: 22128807]
  18. Future Sci OA. 2019 Nov 29;6(2):FSO439 [PMID: 32025328]
  19. Biosens Bioelectron. 2009 Sep 15;25(1):167-72 [PMID: 19628383]
  20. Annu Int Conf IEEE Eng Med Biol Soc. 2017 Jul;2017:1393-1396 [PMID: 29060137]
  21. Anal Bioanal Chem. 2020 May;412(14):3317-3349 [PMID: 32313998]
  22. Biomed Opt Express. 2016 Apr 04;7(5):1672-89 [PMID: 27231613]
  23. Opt Express. 2017 May 15;25(10):11244-11253 [PMID: 28788806]
  24. Angew Chem Int Ed Engl. 2016 Aug 22;55(35):10239-43 [PMID: 27457402]
  25. Micromachines (Basel). 2020 Mar 30;11(4): [PMID: 32235546]
  26. Diagnostics (Basel). 2017 May 28;7(2): [PMID: 28555034]
  27. Biosensors (Basel). 2020 Feb 12;10(2): [PMID: 32059538]
  28. Biosensors (Basel). 2014 Oct 03;4(4):340-57 [PMID: 25587427]
  29. Transl Res. 2019 Nov;213:67-89 [PMID: 31442419]
  30. Nat Microbiol. 2019 Jan;4(1):46-54 [PMID: 30546093]

Grants

  1. CBET-1706472/National Science Foundation
  2. ECCS-1707049/National Science Foundation

MeSH Term

Antibodies
Biosensing Techniques
C-Reactive Protein
Humans
Streptavidin

Chemicals

Antibodies
C-Reactive Protein
Streptavidin

Word Cloud

Created with Highcharts 10.0.0OCBopticalbiosensordetectionLODCRPusingcavity-basedPOCprocessessensitivitystreptavidincavitydifferentconcentrationssamplevolumedevelopedpoint-of-careapplicationslabel-freeemployslow-costcomponentssimplefabricationloweroverallcostachievinghighdifferentialmethodexperimentallydemonstratelimitconductedbiosensingexperimentsC-reactiveproteinstructureoptimizedbettereasierfluidcontrolutilizedpolymerswellingpropertyfine-tunewidthsignificantlyimprovedsuccessrateproducemeasurablesamplesFourtestedtriplicatedetermined135nMalsosuccessfullydetectedthreehumanbiotinylatedantibody377pMmeasurementsdonesmall15µLwithin30minreducingsensingareaimprovingfunctionalizationpassivationincreasingestimatedreducedfemto-molarrangeOveralldemonstratedcapabilitypresentworkshowsgreatpotentialusedpromisingDemonstrationLabel-FreeLow-CostOpticalCavity-BasedBiosensorUsingStreptavidinC-ReactiveProteinbiomarkerbiosensors

Similar Articles

Cited By