Chemogenetic System Demonstrates That Cas9 Longevity Impacts Genome Editing Outcomes.

Vedagopuram Sreekanth, Qingxuan Zhou, Praveen Kokkonda, Heysol C Bermudez-Cabrera, Donghyun Lim, Benjamin K Law, Benjamin R Holmes, Santosh K Chaudhary, Rajaiah Pergu, Brittany S Leger, James A Walker, David K Gifford, Richard I Sherwood, Amit Choudhary
Author Information
  1. Vedagopuram Sreekanth: Chemical Biology and Therapeutics Science Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States.
  2. Qingxuan Zhou: Chemical Biology and Therapeutics Science Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States.
  3. Praveen Kokkonda: Chemical Biology and Therapeutics Science Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States.
  4. Heysol C Bermudez-Cabrera: Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, United States.
  5. Donghyun Lim: Chemical Biology and Therapeutics Science Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States.
  6. Benjamin K Law: Chemical Biology and Therapeutics Science Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States.
  7. Benjamin R Holmes: McGovern Institute for Brain Research at MIT, Cambridge, Massachusetts 02142, United States.
  8. Santosh K Chaudhary: Chemical Biology and Therapeutics Science Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States.
  9. Rajaiah Pergu: Chemical Biology and Therapeutics Science Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States.
  10. Brittany S Leger: Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114, United States.
  11. James A Walker: Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114, United States.
  12. David K Gifford: McGovern Institute for Brain Research at MIT, Cambridge, Massachusetts 02142, United States.
  13. Richard I Sherwood: Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, United States.
  14. Amit Choudhary: Chemical Biology and Therapeutics Science Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States.

Abstract

Prolonged Cas9 activity can hinder genome engineering as it causes off-target effects, genotoxicity, heterogeneous genome-editing outcomes, immunogenicity, and mosaicism in embryonic editing-issues which could be addressed by controlling the longevity of Cas9. Though some temporal controls of Cas9 activity have been developed, only cumbersome systems exist for modifying the lifetime. Here, we have developed a chemogenetic system that brings Cas9 in proximity to a ubiquitin ligase, enabling rapid ubiquitination and degradation of Cas9 by the proteasome. Despite the large size of Cas9, we were able to demonstrate efficient degradation in cells from multiple species. Furthermore, by controlling the Cas9 lifetime, we were able to bias the DNA repair pathways and the genotypic outcome for both templated and nontemplated genome editing. Finally, we were able to dosably control the Cas9 activity and specificity to ameliorate the off-target effects. The ability of this system to change the Cas9 lifetime and, therefore, bias repair pathways and specificity in the desired direction allows precision control of the genome editing outcome.

References

  1. Nat Biotechnol. 2016 Jun;34(6):646-51 [PMID: 27136077]
  2. Biochemistry. 2019 Jan 29;58(4):234-244 [PMID: 30640437]
  3. Cell. 2019 May 2;177(4):1067-1079.e19 [PMID: 31051099]
  4. Nat Biotechnol. 2018 Sep;36(8):765-771 [PMID: 30010673]
  5. Nature. 2018 Nov;563(7733):646-651 [PMID: 30405244]
  6. Mol Cell. 2018 Jun 7;70(5):801-813.e6 [PMID: 29804829]
  7. ACS Chem Biol. 2018 Feb 16;13(2):397-405 [PMID: 29083855]
  8. Nat Biotechnol. 2016 Mar;34(3):339-44 [PMID: 26789497]
  9. Sci Adv. 2017 Jul 12;3(7):e1701620 [PMID: 28706995]
  10. Nat Biotechnol. 2015 Feb;33(2):179-86 [PMID: 25503383]
  11. Nat Med. 2019 May;25(5):776-783 [PMID: 30911135]
  12. Nat Med. 2019 Feb;25(2):249-254 [PMID: 30692695]
  13. Elife. 2017 Sep 19;6: [PMID: 28926338]
  14. Nat Chem Biol. 2007 Dec;3(12):739-44 [PMID: 18007642]
  15. DNA Repair (Amst). 2008 Oct 1;7(10):1765-71 [PMID: 18675941]
  16. Angew Chem Int Ed Engl. 2019 May 6;58(19):6285-6289 [PMID: 30834641]
  17. Nat Commun. 2017 Oct 30;8(1):1191 [PMID: 29084946]
  18. Nat Med. 2018 Jul;24(7):939-946 [PMID: 29892062]
  19. Nat Biotechnol. 2015 May;33(5):543-8 [PMID: 25803306]
  20. Nat Rev Drug Discov. 2017 Feb;16(2):101-114 [PMID: 27885283]
  21. Cold Spring Harb Perspect Biol. 2013 Nov 01;5(11):a012740 [PMID: 24097900]
  22. Nat Commun. 2016 Jan 28;7:10548 [PMID: 26817820]
  23. Nucleic Acids Res. 2015 Oct 30;43(19):9379-92 [PMID: 26429972]
  24. EMBO J. 2009 Oct 7;28(19):2932-44 [PMID: 19644447]
  25. Mol Cell. 2016 Aug 18;63(4):633-646 [PMID: 27499295]
  26. ACS Chem Biol. 2015 Aug 21;10(8):1831-7 [PMID: 26070106]
  27. Nat Commun. 2019 Jun 26;10(1):2806 [PMID: 31243272]
  28. Nat Chem Biol. 2017 Jan;13(1):9-11 [PMID: 27820801]
  29. Nat Biotechnol. 2014 Feb;32(2):171-178 [PMID: 24441470]
  30. Bioorg Med Chem. 2012 Jan 1;20(1):346-55 [PMID: 22112540]
  31. J Org Chem. 2018 Jun 1;83(11):6050-6055 [PMID: 29749733]
  32. Dev Biol. 2019 Jan 15;445(2):156-162 [PMID: 30359560]
  33. Angew Chem Int Ed Engl. 2018 Sep 10;57(37):11993-11997 [PMID: 30048030]
  34. Nat Chem Biol. 2018 May;14(5):431-441 [PMID: 29581585]
  35. Sci Rep. 2016 Mar 31;6:23549 [PMID: 27030102]
  36. Cell Rep. 2018 Dec 4;25(10):2653-2659.e3 [PMID: 30517854]
  37. J Med Chem. 2019 May 23;62(10):5191-5216 [PMID: 31059249]
  38. Nat Med. 2018 Jul;24(7):927-930 [PMID: 29892067]
  39. Org Biomol Chem. 2012 Aug 28;10(32):6473-9 [PMID: 22763639]
  40. Nat Genet. 2020 Jul;52(7):662-668 [PMID: 32424350]
  41. ACS Chem Biol. 2012 Dec 21;7(12):2055-63 [PMID: 23013033]
  42. Sci Rep. 2017 Feb 03;7:42081 [PMID: 28155910]
  43. Nat Commun. 2018 Jun 4;9(1):2164 [PMID: 29867139]
  44. Nat Commun. 2017 May 31;8:15464 [PMID: 28561021]
  45. Nat Biotechnol. 2013 Sep;31(9):822-6 [PMID: 23792628]
  46. Nat Chem Biol. 2011 Jul 03;7(8):538-43 [PMID: 21725302]
  47. DNA Repair (Amst). 2014 Apr;16:84-96 [PMID: 24629483]
  48. Nat Med. 2019 Feb;25(2):242-248 [PMID: 30374197]

Grants

  1. R01 GM132825/NIGMS NIH HHS

Word Cloud

Created with Highcharts 10.0.0Cas9activitygenomelifetimeableoff-targeteffectscontrollingdevelopedsystemdegradationbiasrepairpathwaysoutcomeeditingcontrolspecificityProlongedcanhinderengineeringcausesgenotoxicityheterogeneousgenome-editingoutcomesimmunogenicitymosaicismembryonicediting-issuesaddressedlongevityThoughtemporalcontrolscumbersomesystemsexistmodifyingchemogeneticbringsproximityubiquitinligaseenablingrapidubiquitinationproteasomeDespitelargesizedemonstrateefficientcellsmultiplespeciesFurthermoreDNAgenotypictemplatednontemplatedFinallydosablyameliorateabilitychangethereforedesireddirectionallowsprecisionChemogeneticSystemDemonstratesLongevityImpactsGenomeEditingOutcomes

Similar Articles

Cited By