The Challenge of Implementing Digital Twins in Operating Value Chains.

Roman Werner, Ronny Takacs, Dominik Geier, Thomas Becker, Norbert Weißenberg, Hendrik Haße, Rudolf Sollacher, Michael Thalhofer, Bernhard Schumm, Ines Steinke
Author Information
  1. Roman Werner: Chair of Brewing and Beverage Technology, Technical University of Munich, Munich, Germany.
  2. Ronny Takacs: Chair of Brewing and Beverage Technology, Technical University of Munich, Munich, Germany.
  3. Dominik Geier: Chair of Brewing and Beverage Technology, Technical University of Munich, Munich, Germany. dominik.geier@tum.de.
  4. Thomas Becker: Chair of Brewing and Beverage Technology, Technical University of Munich, Munich, Germany.
  5. Norbert Weißenberg: Fraunhofer Institute for Software and Systems Engineering, ISST, Dortmund, Germany.
  6. Hendrik Haße: Fraunhofer Institute for Software and Systems Engineering, ISST, Dortmund, Germany.
  7. Rudolf Sollacher: Siemens AG, Munich, Germany.
  8. Michael Thalhofer: Siemens AG, Munich, Germany.
  9. Bernhard Schumm: Siemens AG, Munich, Germany.
  10. Ines Steinke: Siemens AG, Munich, Germany.

Abstract

The concept of digital twins has become increasingly popular in recent years. To exploit their full potential, integration of systems and data across entire value chains is required. Implementing digital twins to newly built plants or production lines is challenging and even more complicated for currently operating production processes or factories. This chapter reviews and discusses strategies and tools to successfully implement digital twins into operating value chains in bioprocess and related industries. Furthermore, the implementation is exemplified with three recent case studies.

Keywords

References

  1. Forschungsunion, Acatech (2013) Recommendations for implementing the strategic initiative INDUSTRIE 4.0: Final report of the Industrie 4.0 Working Group. https://www.din.de/blob/76902/e8cac883f42bf28536e7e8165993f1fd/recommendations-for-implementing-industry-4-0-data.pdf . Accessed 3 Jun 2020
  2. Negri E, Fumagalli L, Macchi M (2017) A review of the roles of digital twin in CPS-based production systems. Procedia Manuf 11:939–948. https://doi.org/10.1016/j.promfg.2017.07.198 [DOI: 10.1016/j.promfg.2017.07.198]
  3. Kritzinger W, Karner M, Traar G et al (2018) Digital twin in manufacturing: a categorical literature review and classification. IFAC-PapersOnLine 51:1016–1022. https://doi.org/10.1016/j.ifacol.2018.08.474 [DOI: 10.1016/j.ifacol.2018.08.474]
  4. Rosen R, von Wichert G, Lo G et al (2015) About the importance of autonomy and digital twins for the future of manufacturing. IFAC-PapersOnLine 48:567–572. https://doi.org/10.1016/j.ifacol.2015.06.141 [DOI: 10.1016/j.ifacol.2015.06.141]
  5. Liu S (2013) Bioprocess engineering: kinetics, biosystems, sustainability, and reactor design, 1st edn. Elsevier, Amsterdam
  6. Taylor DH (2005) Value chain analysis: an approach to supply chain improvement in agri-food chains. Int J Phys Distrib Logist Manag 35:744–761. https://doi.org/10.1108/09600030510634599 [DOI: 10.1108/09600030510634599]
  7. Fearne A, Garcia Martinez M, Dent B (2012) Dimensions of sustainable value chains: implications for value chain analysis. Supply Chain Manag 17:575–581. https://doi.org/10.1108/13598541211269193 [DOI: 10.1108/13598541211269193]
  8. Barrientos S (2001) Gender, flexibility and global value chains. IDS Bull 32:83–93. https://doi.org/10.1111/j.1759-5436.2001.mp32003009.x [DOI: 10.1111/j.1759-5436.2001.mp32003009.x]
  9. Alfaro L, Antràs P, Chor D et al (2019) Internalizing global value chains: a firm-level analysis. J Polit Econ 127:508–559. https://doi.org/10.1086/700935 [DOI: 10.1086/700935]
  10. Trienekens JH (2011) Agricultural value chains in developing countries a framework for analysis. Int Food Agribusiness Manag Rev 14:51–82. https://doi.org/10.22004/ag.econ.103987 [DOI: 10.22004/ag.econ.103987]
  11. Bittner K, Spence I (2002) Use case modeling. Safari books online. Addison-Wesley; safari books online, Boston, MA, Sebastopol, CA
  12. Nebut C, Fleurey F, Le Traon Y et al (2006) Automatic test generation: a use case driven approach. IIEEE Trans Software Eng 32:140–155. https://doi.org/10.1109/TSE.2006.22 [DOI: 10.1109/TSE.2006.22]
  13. Marsch P, Da Silva I, Bulakci O et al (2016) 5G radio access network architecture: design guidelines and key considerations. IEEE Commun Mag 54:24–32. https://doi.org/10.1109/MCOM.2016.1600147CM [DOI: 10.1109/MCOM.2016.1600147CM]
  14. Ma X, Tao F, Zhang M et al (2019) Digital twin enhanced human-machine interaction in product lifecycle. Procedia CIRP 83:789–793. https://doi.org/10.1016/j.procir.2019.04.330 [DOI: 10.1016/j.procir.2019.04.330]
  15. Siepmann D, Graef N (2016) Industrie 4.0 – Grundlagen und Gesamtzusammenhang. In: Roth A (ed) Einführung und Umsetzung von Industrie 4.0: Grundlagen, Vorgehensmodell und Use Cases aus der Praxis. Springer, Berlin, Heidelberg, pp 17–82
  16. Deutsches Institut für Normung e.V. (2014) Integration von Unternehmensführungs- und Leitsystemen – Teil 1: Modelle und Terminologie(62264–1:2013)
  17. Redelinghuys A, Basson A, Kruger K (2019) A six-layer digital twin architecture for a manufacturing cell. In: Borangiu T, Trentesaux D, Thomas A et al (eds) Service orientation in Holonic and multi-agent manufacturing, vol 803. Springer, Cham, pp 412–423 [DOI: 10.1007/978-3-030-03003-2_32]
  18. Guo N, Jia C (2017) Interpretation of cyber-physical systems whitepaper (2017). Inform Tech Stand 4:36–47
  19. Ibarz A, Barbosa-Cánovas GV (2003) Unit operations in food engineering. Food preservation technology series. CRC Press, Boca Raton
  20. Foust AS (1960, reprinted, with corrections, 1962) Principles of unit operations. Wiley, New York
  21. International Society of Automation (2010) Batch control part 1: models and terminology (88.00.01-2010)
  22. Weyer S, Schmitt M, Ohmer M et al (2015) Towards industry 4.0 – standardization as the crucial challenge for highly modular, multi-vendor production systems. IFAC-PapersOnLine 48:579–584. https://doi.org/10.1016/j.ifacol.2015.06.143 [DOI: 10.1016/j.ifacol.2015.06.143]
  23. Hallscheidt S, Adomeit N, Manske T et al (2019) 1x1 der Normung: Ein praxisorientierter Leitfaden für KMU. https://www.din.de/resource/blob/69886/5bd30d4f89c483b829994f52f57d8ac2/kleines-1x1-der-normung-neu-data.pdf . Accessed 3 Jun 2020
  24. Lu Y, Liu C, Wang KI-K et al (2020) Digital twin-driven smart manufacturing: connotation, reference model, applications and research issues. Robot Comput Integr Manuf 61:101837. https://doi.org/10.1016/j.rcim.2019.101837 [DOI: 10.1016/j.rcim.2019.101837]
  25. Deutsches Institut für Normung e.V. Normung auf einen Blick. https://www.din.de/resource/blob/249724/2dcba02aa757691193e37aa80a1a6e17/infografik-normung-auf-einen-blick-data.pdf . Accessed 31 Mar 2020 at 07:48pm
  26. International Organization for Standardization (under development) Digital twin manufacturing framework: part 1: overview and general principles (23247-1)
  27. International Organization for Standardization (under development) Digital twin manufacturing framework: part 2: reference architecture (23247-2)
  28. International Organization for Standardization (under development) Digital twin manufacturing framework: part 3: digital representation of physical manufacturing elements (23247-3)
  29. International Organization for Standardization (under development) Digital twin manufacturing framework: part 4: information exchange (23247-4)
  30. International Organization for Standardization (under development) Automation systems and integration — industrial data: visualization elements of digital twins (24464)
  31. International Society of Automation (2001) Batch control part 2: data structures and guidelines for languages (88.00.02-2001)
  32. International Society of Automation (2003) Batch control part 3: general and site recipe models and representation (88.00.03-2003)
  33. International Society of Automation (2006) Batch control part 4: batch production records (88.00.04-2006)
  34. International Society of Automation (2010) Enterprise-control system integration: part 1: models and terminology (95.00.01-2010 (IEC 62264-1 Mod))
  35. International Society of Automation (2018) Enterprise-control system integration: part 2: objects and attributes for enterprise-control system integration (95.00.02-2018)
  36. International Society of Automation (2013) Enterprise-control system integration: part 3: activity models of manufacturing operations management (95.00.03-2013)
  37. International Society of Automation (2018) Enterprise-control system integration: part 4: objects and attributes for manufacturing operations management integration (95.00.04-2018)
  38. International Society of Automation (2018) Enterprise-control system integration: part 5: business-to-manufacturing transactions (95.00.05-2018)
  39. International Society of Automation. Enterprise-control system integration: part 6: messaging service model (95.00.06-2014)
  40. International Society of Automation (2017) Enterprise-control system integration: part 7: alias service model (95.00.07-2017)
  41. International Society of Automation (2015) Machine and Unit States: an implementation example of ANSI/ISA-88.00.01(TR88.00.02-2015)
  42. International Society of Automation. Procedure automation for continuous process operations: models and terminology (106.00.01)
  43. International Society of Automation (2017) Procedure automation for continuous process operations: work processes (106.00.02-2017)
  44. International Society of Automation (2008) Using ISA-88 and ISA-95 together (88.95.01-2008)
  45. International Society of Automation. Enterprise-control system integration: TR01: master data profile template (95.01-2018)
  46. International Society of Automation (2015) Human machine interfaces for process automation systems (101.01-2015)
  47. ZVEI – Zentralverband Elektrotechnik- und Elektronikindustrie e. V. (2015) Modulbasierte Produktion in der Prozessindustrie – Auswirkungen auf die Automation im Umfeld von Industrie 4.0: Empfehlungen des AK Modulare Automation zur NE 148 der Namur, Frankfurt am Main
  48. International Organization for Standardization (2015) Quality management systems: requirements (9001:2015)
  49. International Organization for Standardization (2018) Energy management systems: requirements with guidance for use (50001:2018)
  50. International Organization for Standardization (2018) Occupational health and safety management systems: requirements with guidance for use (45001:2018)
  51. International Organization for Standardization (2018) Food safety management (22000:2018)
  52. International Organization for Standardization (2013) Food safety management systems: requirements for bodies providing audit and certification of food safety management systems (22003:2013)
  53. International Organization for Standardization (2007) Traceability in the feed and food chain: general principles and basic requirements for system design and implementation (22005:2007)
  54. Deutsches Institut für Normung e.V. (2000) Chargenorientierte Fahrweise: Teil 1: Modelle und Terminologie (61512)
  55. International Electrotechnical Commission (1997) Batch control: part 1: models and terminology (61512-1:1997)
  56. International Society of Automation (1996) Possible recipe procedure presentation formats (88.0.03-1996)
  57. Heidel R, Hoffmeister M, Hankel M et al (2017) Industrie4.0 Basiswissen RAMI4.0: Referenzarchitekturmodell mit Industrie4.0-Komponente, 1st edn. VDE Verlag GmbH; Beuth Verlag GmbH, Berlin, Wien, Zürich
  58. Affairs and Energy, Federal Ministry for Economics (2020) Project GAIA-X. https://www.bmwi.de/Redaktion/EN/Publikationen/Digitale-Welt/project-gaia-x.html . Accessed 21 Apr 2020
  59. Otto B, Steinbuß S, Teuscher A, Lohmann S (2019) Reference architekture model 2019: version 3.0. https://www.internationaldataspaces.org/wp-content/uploads/2019/03/IDS-Reference-Architecture-Model-3.0.pdf . Accessed 30 Mar 2020
  60. Tools.ietf.org , Rfcmarkup Version 1.129d On (2020) RFC 3987 – Internationalized Resource Identifiers (IRIs). https://tools.ietf.org/html/rfc3987 . Accessed 21 Apr 2020
  61. (2020) eCl@ss: home. https://www.eclass.eu/en/index.html . Accessed 21 Apr 2020
  62. International Electrotechnical Commission (2017) Standard data element types with associated classification scheme: part 1: definitions – principles and methods (61360-1:2017)
  63. The World Wide Web Consortium (2018) XML schema part 2: datatypes second edition. https://www.w3.org/TR/xmlschema-2/ . Accessed 21 Apr 2020
  64. Wang XV, Wang L (2019) Digital twin-based WEEE recycling, recovery and remanufacturing in the background of industry 4.0. Int J Prod Res 57:3892–3902. https://doi.org/10.1080/00207543.2018.1497819 [DOI: 10.1080/00207543.2018.1497819]
  65. Wagner C, Grothoff J, Epple U et al (2017) The role of the industry 4.0 asset administration shell and the digital twin during the life cycle of a plant: September 12–15, 2017, Limassol, Cyprus: 1–8. https://doi.org/10.1109/ETFA.2017.8247583
  66. Otto B, ten Homplel M, Wrobel S (2018) Industrial Data Spaces: Referenzarchitektur für die Digitalisierung der Wirtschaft. In: Neugebauer R (ed) Digitalisierung: Schlüsseltechnologien für Wirtschaft und Gesellschaft, 1st edn. Springer, Berlin, pp 113–133
  67. Capiello C, Gal A, Jarke M et al (2020) Data ecosystems: sovereign data exchange among organizations (Dagstuhl Seminar 19391). https://doi.org/10.4230/DAGREP.9.9.66
  68. Steinmetz C, Rettberg A, Ribeiro FGC et al (2018) Internet of things ontology for digital twin in cyber physical systems. In: SBESC 2018: 2018 VIII Brazilian symposium on computing systems engineering: proceedings: Salvador, Brazil, 6–9 November 2018. Conference Publishing Services, IEEE Computer Society, Los Alamitos, CA, pp 154–159
  69. Jung C, Eitel A, Schwarz R (2014) Enhancing cloud security with context-aware usage control policies. In: Plödereder E, Grunske L, Schneider E et al (eds) Informatik 2014: Big Data – Komplexität meistern: 22–26 September 2014, Stuttgart: proceedings. Gesellschaft für Informatik, Bonn, pp 211–222
  70. Bussard L, Neven G, Preiss F-S (2010) Downstream usage control. In: IEEE international symposium on policies for distributed systems and networks (POLICY), 2010: 21–23 July 2010, Fairfax, Virginia, USA; proceedings. IEEE, Piscataway, NJ, pp 22–29
  71. Zrenner J, Möller FO, Jung C et al (2019) Usage control architecture options for data sovereignty in business ecosystems. J Enterprise Inform Manag 32:477–495. https://doi.org/10.1108/JEIM-03-2018-0058 [DOI: 10.1108/JEIM-03-2018-0058]
  72. International Data Spaces e.V. https://www.internationaldataspaces.org . Accessed 23 Jun 2020
  73. (2020) DIN SPEC 27070:2020-03, Anforderungen und Referenzarchitektur eines Security Gateways zum Austausch von Industriedaten und Diensten. https://doi.org/10.31030/3139499
  74. (2020) Home|Industrie 4.0 Recht-Testbed. https://legaltestbed.org/en/start/ . Accessed 21 Apr 2020
  75. unn | UNITED NEWS NETWORK GmbH (2020) Die Bedeutung von IDS für die Europäische Digital-Wirtschaft. https://www.pressebox.de/pressemitteilung/industrial-data-space-e-v/Die-Bedeutung-von-IDS-fuer-die-Europaeische-Digital-Wirtschaft/boxid/993608 . Accessed 21 Apr 2020
  76. Siemens AG (2020) MindSphere. https://siemens.mindsphere.io . Accessed 28 May 2020
  77. Werner R, Beugholt A, Takacs R, Geier D, Becker T, Sollacher R, Mauermann M, Weißenberg N, Roest M, Istaitih J (2020) Standardized digitalization of an existing pudding production by introducing a digital twin management system. International Dairy Magazine
  78. Copa Cogeca, CEMA, Fertilizers Europe et al (2018) EU code of conduct on agriculture data sharing: Guidelines for correct use of agriculture data. http://www.fao.org/family-farming/detail/en/c/1127623/ . Accessed 28 May 2020
  79. Tebbje S, Karthikeyan G, Friesen M et al Entwicklung einer IT-Sicherheitsinfrastruktur für verteilte Automatisierungssysteme: Schlussbericht zu IGF-Vorhaben Nr. 19117 N. https://serwiss.bib.hs-hannover.de/frontdoor/deliver/index/docId/1626/file/Schlussbericht_V31.pdf . Accessed 27 May 2020
  80. Singh S, Shehab E, Higgins N et al (2018) Challenges of digital twin in high value manufacturing. In: SAE technical paper series. SAE International400 commonwealth drive, Warrendale, PA, USA
  81. Colombo AW, Karnouskos S, Kaynak O et al (2017) Industrial cyberphysical systems: a backbone of the fourth industrial revolution. EEE Ind Electron Mag 11:6–16. https://doi.org/10.1109/MIE.2017.2648857 [DOI: 10.1109/MIE.2017.2648857]
  82. Biffl S, Eckhart M, Lüder A et al (2019) Security and quality in cyber-physical systems engineering: with forewords by Robert M. Lee and Tom Gilb, 1st edn. Springer, Cham
  83. Werner R, Beugholt B, Takacs R et al (2020) Digitalisierung einer bestehenden Puddingproduktion – Implementierung eines Managementsystems für digitale Zwillinge. molkerei-industrie: 24–28
  84. EIT Food (2020) https://www.eitfood.eu/innovation/projects/the-development-of-organic-supply-chains-that-drive-fair-transparent-and-healthy-options-for-the-consumer-2020 . Accessed 21 Apr 2020
  85. Über den CCIT (2020) https://www.cit.fraunhofer.de/de/ueber-ccit.html . Accessed 21 Apr 2020
  86. Haße H, Li B, Weißenberg N et al (2019) Digital twin for real-time data processing in logistics. Proceedings of the Hamburg international conference of logistics (HICL). https://doi.org/10.15480/882.2462
  87. Susto GA, Schirru A, Pampuri S et al (2015) Machine learning for predictive maintenance: a multiple classifier approach. IEEE Trans Ind Inf 11:812–820. https://doi.org/10.1109/TII.2014.2349359 [DOI: 10.1109/TII.2014.2349359]
  88. Rajesh PK, Manikandan N, Ramshankar CS et al (2019) Digital twin of an automotive brake pad for predictive maintenance. Procedia Comput Sci 165:18–24. https://doi.org/10.1016/j.procs.2020.01.061 [DOI: 10.1016/j.procs.2020.01.061]
  89. Uhlemann TH-J, Lehmann C, Steinhilper R (2017) The digital twin: realizing the cyber-physical production system for industry 4.0. Procedia CIRP 61:335–340. https://doi.org/10.1016/j.procir.2016.11.152 [DOI: 10.1016/j.procir.2016.11.152]

Word Cloud

Created with Highcharts 10.0.0digitaltwinsvaluechainsrecentsystemsImplementingproductionoperatingDigitalOperatingconceptbecomeincreasinglypopularyearsexploitfullpotentialintegrationdataacrossentirerequirednewlybuiltplantslineschallengingevencomplicatedcurrentlyprocessesfactorieschapterreviewsdiscussesstrategiestoolssuccessfullyimplementbioprocessrelatedindustriesFurthermoreimplementationexemplifiedthreecasestudiesChallengeTwinsValueChainstwinmanagementEcosystemsStandardization

Similar Articles

Cited By