Control of Methicillin-Resistant Strains Associated With a Hospital Outbreak Involving Contamination From Anesthesia Equipment Using UV-C.

Sara A Ochoa, Ariadnna Cruz-Córdova, Jetsi Mancilla-Rojano, Gerardo Escalona-Venegas, Veronica Esteban-Kenel, Isabel Franco-Hernández, Israel Parra-Ortega, José Arellano-Galindo, Rigoberto Hernández-Castro, Citlalli F Perez-López, Daniela De la Rosa-Zamboni, Juan Xicohtencatl-Cortes
Author Information
  1. Sara A Ochoa: Laboratorio de Investigación en Bacteriología Intestinal, Hospital Infantil de México Federico Gómez, Ciudad de México, Mexico.
  2. Ariadnna Cruz-Córdova: Laboratorio de Investigación en Bacteriología Intestinal, Hospital Infantil de México Federico Gómez, Ciudad de México, Mexico.
  3. Jetsi Mancilla-Rojano: Laboratorio de Investigación en Bacteriología Intestinal, Hospital Infantil de México Federico Gómez, Ciudad de México, Mexico.
  4. Gerardo Escalona-Venegas: Laboratorio de Investigación en Bacteriología Intestinal, Hospital Infantil de México Federico Gómez, Ciudad de México, Mexico.
  5. Veronica Esteban-Kenel: Laboratorio de Investigación en Bacteriología Intestinal, Hospital Infantil de México Federico Gómez, Ciudad de México, Mexico.
  6. Isabel Franco-Hernández: Laboratorio Central de Bacteriología, Hospital Infantil de México Federico Gómez, Ciudad de México, Mexico.
  7. Israel Parra-Ortega: Laboratorio Central de Bacteriología, Hospital Infantil de México Federico Gómez, Ciudad de México, Mexico.
  8. José Arellano-Galindo: Departamento de Infectología, Hospital Infantil de México Federico Gómez, Ciudad de México, Mexico.
  9. Rigoberto Hernández-Castro: Departamento de Ecología de Agentes Patógenos, Hospital General Dr. Manuel Gea González, Ciudad de México, Mexico.
  10. Citlalli F Perez-López: Departamento de Epidemiología Hospitalaria, Hospital Infantil de México Federico Gómez, Ciudad de México, Mexico.
  11. Daniela De la Rosa-Zamboni: Departamento de Epidemiología Hospitalaria, Hospital Infantil de México Federico Gómez, Ciudad de México, Mexico.
  12. Juan Xicohtencatl-Cortes: Laboratorio de Investigación en Bacteriología Intestinal, Hospital Infantil de México Federico Gómez, Ciudad de México, Mexico.

Abstract

Methicillin-resistant (MRSA) is considered an opportunistic pathogen in humans and is mainly associated with healthcare-associated infections (HCAIs). This bacterium colonizes the skin and mucous membranes of healthy people and causes frequent hospital outbreaks. The aim of this study was to perform molecular typing of the staphylococcal cassette chromosome (SCC) and loci as wells as to establish the pulsotypes and clonal complexes (CCs) for MRSA and methicillin-sensitive . (MSSA) outbreaks associated with the operating room (OR) at a pediatric hospital. Twenty-five clinical strains of (19 MRSA and 6 MSSA strains) were recovered from the outbreak (patients, anesthesia equipment, and nasopharyngeal exudates from external service anesthesia technicians). These clinical . strains were mainly resistant to benzylpenicillin (100%) and erythromycin (84%) and were susceptible to vancomycin and nitrofurantoin. The SCC type II was amplified in 84% of the . strains, and the most frequent type of the locus was , which was amplified in 72% of the strains; however, the and genes were mainly detected in MSSA strains. A pulsed-field gel electrophoresis (PFGE) analysis grouped the 25 strains into 16 pulsotypes (P), the most frequent of which was P1, including 10 MRSA strains related to the anesthesia equipment, external service anesthesia technicians, and hospitalized patients. Multilocus sequence typing (MLST) identified 15 sequence types (STs) distributed in nine CCs. The most prevalent ST was ST1011, belonging to CC5, which was associated with the SCC type II and type. We postulate that the external service anesthesia technicians were MRSA carriers and that these strains were indirectly transmitted from the contaminated anesthesia equipment that was inappropriately disinfected. Finally, the MRSA outbreak was controlled when the anesthesia equipment disinfection was improved and hand hygiene was reinforced.

Keywords

References

  1. Microb Drug Resist. 2019 Jan/Feb;25(1):47-53 [PMID: 29708846]
  2. Int J Antimicrob Agents. 2012 Apr;39(4):273-82 [PMID: 22230333]
  3. Yale J Biol Med. 2017 Jun 23;90(2):269-281 [PMID: 28656013]
  4. Kaohsiung J Med Sci. 2017 Dec;33(12):587-593 [PMID: 29132547]
  5. Crit Care. 2017 Aug 14;21(1):211 [PMID: 28807042]
  6. Emerg Med J. 2019 Feb;36(2):89-91 [PMID: 30504457]
  7. Folia Microbiol (Praha). 2020 Jun;65(3):615-622 [PMID: 32172504]
  8. J Clin Microbiol. 2012 May;50(5):1679-83 [PMID: 22378906]
  9. Microb Drug Resist. 2020 Jun;26(6):537-544 [PMID: 31825276]
  10. J Clin Microbiol. 2003 Jul;41(7):3323-6 [PMID: 12843083]
  11. Vet J. 2013 Aug;197(2):415-9 [PMID: 23465751]
  12. Antimicrob Agents Chemother. 2017 Sep 22;61(10): [PMID: 28760895]
  13. Microb Pathog. 2017 Mar;104:328-335 [PMID: 28159661]
  14. Clin Microbiol Infect. 2004 Feb;10(2):92-7 [PMID: 14759234]
  15. Infect Genet Evol. 2010 Oct;10(7):866-75 [PMID: 20692376]
  16. Emerg Microbes Infect. 2019;8(1):471-478 [PMID: 30924398]
  17. Wien Med Wochenschr. 2019 Feb;169(Suppl 1):25-30 [PMID: 30623278]
  18. J Clin Microbiol. 2006 May;44(5):1875-6 [PMID: 16672428]
  19. J Clin Microbiol. 2005 Jul;43(7):3095-100 [PMID: 16000419]
  20. J Clin Microbiol. 2000 Mar;38(3):1008-15 [PMID: 10698988]
  21. J Hosp Infect. 2000 Mar;44(3):160-72 [PMID: 10706798]
  22. BMC Bioinformatics. 2010 Dec 10;11:595 [PMID: 21143983]
  23. J Antimicrob Chemother. 2016 Jan;71(1):45-52 [PMID: 26424737]
  24. Commun Dis Intell (2018). 2020 Mar 16;44: [PMID: 32178604]
  25. Infect Genet Evol. 2008 Dec;8(6):747-63 [PMID: 18718557]
  26. J Clin Microbiol. 2002 Nov;40(11):4060-7 [PMID: 12409375]
  27. Antimicrob Agents Chemother. 2002 May;46(5):1492-502 [PMID: 11959587]
  28. J Clin Microbiol. 1992 Oct;30(10):2599-605 [PMID: 1328279]
  29. JAMA. 2010 Aug 11;304(6):641-8 [PMID: 20699455]
  30. PLoS One. 2012;7(6):e38576 [PMID: 22745670]
  31. J Clin Microbiol. 2007 Jan;45(1):127-33 [PMID: 17093021]
  32. PLoS One. 2011 Jan 21;6(1):e16426 [PMID: 21283661]
  33. Front Microbiol. 2015 May 05;6:369 [PMID: 25999924]
  34. BMC Infect Dis. 2014 Apr 07;14:187 [PMID: 24708734]
  35. J Antimicrob Chemother. 2020 Jan 1;75(1):46-50 [PMID: 31617906]
  36. BMC Infect Dis. 2019 Jul 3;19(1):575 [PMID: 31269912]
  37. mBio. 2012 Feb 21;3(1): [PMID: 22354957]
  38. J Antimicrob Chemother. 2015 Dec;70(12):3200-4 [PMID: 26318189]
  39. Am J Infect Control. 2018 Oct;46(10):1134-1141 [PMID: 29907449]
  40. Front Microbiol. 2019 Dec 04;10:2763 [PMID: 31866962]
  41. PLoS One. 2019 Mar 26;14(3):e0209865 [PMID: 30913243]
  42. Front Microbiol. 2018 Aug 22;9:1901 [PMID: 30186248]
  43. J Clin Microbiol. 2012 Jul;50(7):2538-9 [PMID: 22573598]
  44. Emerg Infect Dis. 2009 May;15(5):727-34 [PMID: 19402958]
  45. Am J Infect Control. 2012 Apr;40(3):201-5 [PMID: 22440671]
  46. Am J Infect Control. 2016 Sep 1;44(9):e157-61 [PMID: 27040562]
  47. J Infect Dis. 2020 Mar 16;221(Supplement_2):S220-S228 [PMID: 32176793]
  48. J Clin Microbiol. 2008 May;46(5):1818-23 [PMID: 18305127]
  49. Microbiol Spectr. 2018 Feb;7(2): [PMID: 30953424]
  50. Am J Infect Control. 2018 Sep;46(9):1003-1008 [PMID: 29661632]
  51. Appl Environ Microbiol. 2010 Aug;76(15):5165-74 [PMID: 20543040]
  52. Braz J Infect Dis. 2003 Feb;7(1):32-43 [PMID: 12807690]
  53. Ther Adv Infect Dis. 2019 Apr 03;6:2049936119839312 [PMID: 30984396]
  54. J Bacteriol. 2000 Nov;182(22):6517-22 [PMID: 11053400]
  55. Nat Rev Microbiol. 2019 Apr;17(4):203-218 [PMID: 30737488]
  56. J Med Microbiol. 2018 Dec;67(12):1761-1771 [PMID: 30372411]
  57. Int J Med Microbiol. 2013 Aug;303(6-7):318-23 [PMID: 23499479]
  58. Clin Microbiol Rev. 2018 Sep 12;31(4): [PMID: 30209034]
  59. J Vet Sci. 2011 Sep;12(3):221-6 [PMID: 21897094]
  60. Science. 1997 Jun 27;276(5321):2027-30 [PMID: 9197262]
  61. Appl Environ Microbiol. 2011 May;77(9):3052-60 [PMID: 21378035]
  62. J Clin Microbiol. 2005 Jul;43(7):3364-72 [PMID: 16000461]
  63. J Hosp Infect. 2019 Jun;102(2):189-199 [PMID: 30721732]
  64. J Clin Microbiol. 2005 Oct;43(10):5026-33 [PMID: 16207957]
  65. Int J Infect Dis. 2010 Jul;14(7):e560-6 [PMID: 20047848]
  66. J Clin Microbiol. 1995 Sep;33(9):2233-9 [PMID: 7494007]
  67. Microb Drug Resist. 2020 Jun;26(6):661-669 [PMID: 31910349]
  68. Antimicrob Agents Chemother. 2003 Dec;47(12):3926-34 [PMID: 14638503]
  69. Vet Microbiol. 2010 Jul 29;144(1-2):166-71 [PMID: 20092969]
  70. J Med Microbiol. 2019 May;68(5):720-727 [PMID: 30994438]
  71. Microb Pathog. 2016 Apr;93:8-12 [PMID: 26796298]
  72. BMC Microbiol. 2020 Jul 20;20(1):213 [PMID: 32689948]

Word Cloud

Created with Highcharts 10.0.0strainsMRSAanesthesiaequipmenttypemainlyassociatedfrequentSCCMSSAexternalservicetechnicianshospitaloutbreakstypingpulsotypesCCsclinicaloutbreakpatients84%IIamplifiedPFGEsequenceMLSTMethicillin-resistantconsideredopportunisticpathogenhumanshealthcare-associatedinfectionsHCAIsbacteriumcolonizesskinmucousmembraneshealthypeoplecausesaimstudyperformmolecularstaphylococcalcassettechromosomelociwellsestablishclonalcomplexesmethicillin-sensitiveoperatingroomORpediatricTwenty-five196recoverednasopharyngealexudatesresistantbenzylpenicillin100%erythromycinsusceptiblevancomycinnitrofurantoinlocus72%howevergenesdetectedpulsed-fieldgelelectrophoresisanalysisgrouped2516PP1including10relatedhospitalizedMultilocusidentified15typesSTsdistributednineprevalentSTST1011belongingCC5postulatecarriersindirectlytransmittedcontaminatedinappropriatelydisinfectedFinallycontrolleddisinfectionimprovedhandhygienereinforcedControlMethicillin-ResistantStrainsAssociatedHospitalOutbreakInvolvingContaminationAnesthesiaEquipmentUsingUV-Cgeneticdiversitymultidrugresistance

Similar Articles

Cited By