Identifying Psychological Symptoms Based on Facial Movements.

Xiaoyang Wang, Yilin Wang, Mingjie Zhou, Baobin Li, Xiaoqian Liu, Tingshao Zhu
Author Information
  1. Xiaoyang Wang: Institute of Psychology, Chinese Academy of Sciences, Beijing, China.
  2. Yilin Wang: Institute of Psychology, Chinese Academy of Sciences, Beijing, China.
  3. Mingjie Zhou: Institute of Psychology, Chinese Academy of Sciences, Beijing, China.
  4. Baobin Li: Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.
  5. Xiaoqian Liu: Institute of Psychology, Chinese Academy of Sciences, Beijing, China.
  6. Tingshao Zhu: Institute of Psychology, Chinese Academy of Sciences, Beijing, China.

Abstract

Many methods have been proposed to automatically identify the presence of mental illness, but these have mostly focused on one specific mental illness. In some non-professional scenarios, it would be more helpful to understand an individual's mental health status from all perspectives. We recruited 100 participants. Their multi-dimensional psychological symptoms of mental health were evaluated using the Symptom Checklist 90 (SCL-90) and their facial movements under neutral stimulation were recorded using Microsoft Kinect. We extracted the time-series characteristics of the key points as the input, and the subscale scores of the SCL-90 as the output to build facial prediction models. Finally, the convergent validity, discriminant validity, criterion validity, and the split-half reliability were respectively assessed using a multitrait-multimethod matrix and correlation coefficients. The correlation coefficients between the predicted values and actual scores were 0.26 and 0.42 ( < 0.01), which indicated good criterion validity. All models except depression had high convergent validity but low discriminant validity. Results also indicated good levels of split-half reliability for each model [from 0.516 (hostility) to 0.817 (interpersonal sensitivity)] ( < 0.001). The validity and reliability of facial prediction models were confirmed for the measurement of mental health based on the SCL-90. Our research demonstrated that fine-grained aspects of mental health can be identified from the face, and provided a feasible evaluation method for multi-dimensional prediction models.

Keywords

References

  1. Acta Psychol (Amst). 2020 Sep;209:103141 [PMID: 32717654]
  2. J Am Geriatr Soc. 2012 Dec;60(12):2371-3 [PMID: 23231560]
  3. Biopsychosoc Med. 2008 Oct 28;2:19 [PMID: 18957078]
  4. J Autism Dev Disord. 2020 Aug;50(8):2765-2778 [PMID: 32006272]
  5. Psychol Med. 2015 Aug;45(11):2427-36 [PMID: 25804325]
  6. Psychosom Med. 1976 Sep-Oct;38(5):337-47 [PMID: 981492]
  7. Asian J Psychiatr. 2018 Jun;35:29-33 [PMID: 29751218]
  8. J Nerv Ment Dis. 2008 Apr;196(4):282-8 [PMID: 18414122]
  9. Psychopharmacol Bull. 1973 Jan;9(1):13-28 [PMID: 4682398]
  10. J Abnorm Psychol. 1974 Jun;83(3):319-22 [PMID: 4844922]
  11. J Nerv Ment Dis. 2013 Nov;201(11):934-40 [PMID: 24177479]
  12. Laryngoscope Investig Otolaryngol. 2020 Jan 31;5(1):96-116 [PMID: 32128436]
  13. J Med Internet Res. 2007 Jan 31;9(1):e2 [PMID: 17478411]
  14. Mol Autism. 2016 Nov 11;7:46 [PMID: 27895883]
  15. Scand J Caring Sci. 2005 Dec;19(4):373-80 [PMID: 16324062]
  16. Br J Psychiatry. 1988 May;152:660-4 [PMID: 3167442]
  17. Health Care Financ Rev. 2006 Summer;27(4):123-36 [PMID: 17290662]
  18. Soc Sci Med. 2017 Dec;195:42-49 [PMID: 29132081]
  19. J Abnorm Psychol. 1965 Feb;70:47-51 [PMID: 14271292]
  20. Psychopathology. 2010;43(4):216-22 [PMID: 20424502]
  21. Psychol Med. 2012 Jul;42(7):1417-28 [PMID: 22099606]
  22. Biol Psychiatry. 2005 May 1;57(9):1052-60 [PMID: 15860346]
  23. Br J Psychiatry. 1971 Aug;119(549):213-5 [PMID: 5565915]
  24. J Neurolinguistics. 2007 Jan;20(1):50-64 [PMID: 21253440]
  25. Brain Dev. 2008 May;30(5):342-8 [PMID: 18060712]
  26. Brain Struct Funct. 2008 Sep;213(1-2):93-118 [PMID: 18704495]
  27. Eur Child Adolesc Psychiatry. 2006 Aug;15(5):245-55 [PMID: 16685476]
  28. Depress Anxiety. 2003;18(1):1-6 [PMID: 12900947]
  29. Pers Soc Psychol Bull. 2004 Jan;30(1):56-66 [PMID: 15030643]
  30. Sensors (Basel). 2019 Aug 25;19(17): [PMID: 31450687]
  31. Dtsch Arztebl Int. 2014 Jul 7;111(27-28):473-80 [PMID: 25138725]
  32. Psychol Sci. 2009 Apr;20(4):429-34 [PMID: 19399968]
  33. Front Psychiatry. 2019 May 06;10:288 [PMID: 31133892]
  34. J Psychosom Res. 1975 Feb;19(1):1-9 [PMID: 1142310]
  35. IEEE Trans Pattern Anal Mach Intell. 2012 Jan;34(1):187-93 [PMID: 21844627]
  36. Psychiatry Res. 2013 Dec 30;214(3):277-84 [PMID: 24080517]
  37. Depress Anxiety. 2014 Jan;31(1):77-86 [PMID: 24038767]
  38. J Child Psychol Psychiatry. 1989 Sep;30(5):725-35 [PMID: 2793960]
  39. Res Autism Spectr Disord. 2011;5(4):1510-1516 [PMID: 21647245]
  40. J Nerv Ment Dis. 1994 Sep;182(9):508-16 [PMID: 8083680]
  41. Br J Soc Clin Psychol. 1977 Nov;16(4):347-56 [PMID: 588890]

Word Cloud

Created with Highcharts 10.0.0mentalvalidity0healthSCL-90facialmodelsusingpredictionreliabilityillnessmulti-dimensionalpsychologicalsymptomsmovementsscoresconvergentdiscriminantcriterionsplit-halfmultitrait-multimethodmatrixcorrelationcoefficients<indicatedgoodManymethodsproposedautomaticallyidentifypresencemostlyfocusedonespecificnon-professionalscenarioshelpfulunderstandindividual'sstatusperspectivesrecruited100participantsevaluatedSymptomChecklist90neutralstimulationrecordedMicrosoftKinectextractedtime-seriescharacteristicskeypointsinputsubscaleoutputbuildFinallyrespectivelyassessedpredictedvaluesactual264201exceptdepressionhighlowResultsalsolevelsmodel[from516hostility817interpersonalsensitivity]001confirmedmeasurementbasedresearchdemonstratedfine-grainedaspectscanidentifiedfaceprovidedfeasibleevaluationmethodIdentifyingPsychologicalSymptomsBasedFacialMovementsmachinelearning

Similar Articles

Cited By