Relationship between COVID-19 infection rates and air pollution, geo-meteorological, and social parameters.

Md Shareful Hassan, Mohammad Amir Hossain Bhuiyan, Faysal Tareq, Md Bodrud-Doza, Saikat Mandal Tanu, Khondkar Ayaz Rabbani
Author Information
  1. Md Shareful Hassan: Department of Environmental Sciences, Jahangirnagar University, Dhaka, 1342, Bangladesh. shareful@gmx.com. ORCID
  2. Mohammad Amir Hossain Bhuiyan: Department of Environmental Sciences, Jahangirnagar University, Dhaka, 1342, Bangladesh.
  3. Faysal Tareq: Institute of Energy, University of Dhaka, Dhaka, 1000, Bangladesh.
  4. Md Bodrud-Doza: Climate Change Programme, BRAC Bangladesh, Dhaka, Bangladesh.
  5. Saikat Mandal Tanu: Department of Geography and Environment, Jahangirnagar University, Dhaka, 1342, Bangladesh.
  6. Khondkar Ayaz Rabbani: Department of Environmental Science and Management, Independent University Bangladesh (IUB), Dhaka, Bangladesh.

Abstract

Like all infectious diseases, the infection rate of COVID-19 is dependent on many variables. In order to effectively prepare a localized plan for infectious disease management, it is important to find the relationship between COVID-19 infection rate and other key variables. This study aims to understand the spatial relationships between COVID-19 infection rate and key variables of air pollution, geo-meteorological, and social parameters in Dhaka, Bangladesh. The relationship was analyzed using Geographically Weighted Regression (GWR) model and Geographic Information System (GIS) by means of COVID-19 infection rate as a dependent variable and 17 independent variables. This study revealed that air pollution parameters like PM (p < 0.02), AOT (p < 0.01), CO (p < 0.05), water vapor (p < 0.01), and O (p < 0.01) were highly correlated with COVID-19 infection rate while geo-meteorological parameters like DEM (p < 0.01), wind pressure (p < 0.01), LST (p < 0.04), rainfall (p < 0.01), and wind speed (p < 0.03) were also similarly associated. Social parameters like population density (p < 0.01), brickfield density (p < 0.02), and poverty level (p < 0.01) showed high coefficients as the key independent variables to COVID-19 infection rate. Significant robust relationships between these factors were found in the middle and southern parts of the city where the reported COVID-19 infection case was also higher. Relevant agencies can utilize these findings to formulate new and smart strategies for reducing infectious diseases like COVID-19 in Dhaka and in similar urban cities around the world. Future studies will have more variables including ecological, meteorological, and economical to model and understand the spread of COVID-19.

Keywords

References

  1. Sci Total Environ. 2020 Aug 1;728:138835 [PMID: 32334162]
  2. Int J Infect Dis. 2020 Aug;97:278-282 [PMID: 32502664]
  3. Sci Total Environ. 2020 Jul 15;726:138605 [PMID: 32302812]
  4. Urban Clim. 2020 Dec;34:100680 [PMID: 32834966]
  5. Int J Environ Res Public Health. 2020 May 14;17(10): [PMID: 32422948]
  6. Sci Total Environ. 2020 Jul 1;724:138226 [PMID: 32408453]
  7. J Travel Med. 2020 May 18;27(3): [PMID: 32227186]
  8. Environ Pollut. 2020 Jun;261:114465 [PMID: 32268945]
  9. Sci Total Environ. 2020 Aug 10;729:138705 [PMID: 32361432]
  10. PLoS One. 2021 Mar 29;16(3):e0237294 [PMID: 33780470]
  11. JAMA Netw Open. 2020 Jun 1;3(6):e2011834 [PMID: 32525550]
  12. Infect Dis Poverty. 2018 Nov 29;7(1):126 [PMID: 30541601]
  13. Environ Sci Pollut Res Int. 2021 Jun;28(21):27056-27066 [PMID: 33501581]
  14. Environ Pollut. 2020 Jun;261:114165 [PMID: 32097792]
  15. Environ Res. 2020 Aug;187:109650 [PMID: 32416357]
  16. Sci Total Environ. 2020 Jul 1;724:138201 [PMID: 32408450]
  17. Earth Syst Environ. 2020;4(3):513-522 [PMID: 34723073]
  18. Environ Sci Pollut Res Int. 2021 Aug;28(30):40322-40328 [PMID: 32989697]
  19. Sci Total Environ. 2020 Nov 1;741:140396 [PMID: 32592974]
  20. Sci Total Environ. 2020 Aug 1;728:138810 [PMID: 32334158]
  21. N Engl J Med. 2020 Apr 30;382(18):1708-1720 [PMID: 32109013]
  22. Int J Environ Res Public Health. 2020 Jun 05;17(11): [PMID: 32517125]
  23. Sci Total Environ. 2020 Aug 10;729:139090 [PMID: 32388137]
  24. Sci Rep. 2020 Oct 12;10(1):17002 [PMID: 33046802]
  25. Sci Total Environ. 2020 Aug 1;728:138878 [PMID: 32335409]
  26. Appl Environ Microbiol. 2010 May;76(9):2712-7 [PMID: 20228108]
  27. J Public Health (Oxf). 2020 Aug 18;42(3):466-469 [PMID: 32530033]
  28. Front Public Health. 2020 Feb 20;8:14 [PMID: 32154200]
  29. Lancet. 2020 Feb 15;395(10223):497-506 [PMID: 31986264]
  30. Sci Total Environ. 2020 Aug 1;728:138778 [PMID: 32335405]
  31. Math Biosci. 2013 Aug;244(2):125-34 [PMID: 23665296]
  32. Sci Total Environ. 2020 Aug 10;729:139051 [PMID: 32361460]
  33. Environ Pollut. 2017 May;224:541-551 [PMID: 28237303]
  34. Environ Res. 2020 Jul;186:109639 [PMID: 32668559]
  35. SN Compr Clin Med. 2020;2(4):383-387 [PMID: 32296757]

MeSH Term

Air Pollutants
Air Pollution
Bangladesh
COVID-19
Cities
Environmental Monitoring
Humans
Particulate Matter
SARS-CoV-2

Chemicals

Air Pollutants
Particulate Matter

Word Cloud

Created with Highcharts 10.0.0p < 0COVID-19infection01ratevariablesparameterslikeinfectiouskeyairpollutiongeo-meteorologicalDhakadiseasesdependentrelationshipstudyunderstandrelationshipssocialBangladeshGeographicallyWeightedRegressionGWRmodelGISindependent02windalsodensitycityLikemanyordereffectivelypreparelocalizedplandiseasemanagementimportantfindaimsspatialanalyzedusingGeographicInformationSystemmeansvariable17revealedPMAOTCO05watervaporOhighlycorrelatedDEMpressureLST04rainfallspeed03similarlyassociatedSocialpopulationbrickfieldpovertylevelshowedhighcoefficientsSignificantrobustfactorsfoundmiddlesouthernpartsreportedcasehigherRelevantagenciescanutilizefindingsformulatenewsmartstrategiesreducingsimilarurbancitiesaroundworldFuturestudieswillincludingecologicalmeteorologicaleconomicalspreadRelationshiprates

Similar Articles

Cited By