Work-system interventions in robotic-assisted surgery: a systematic review exploring the gap between challenges and solutions.

Falisha Kanji, Ken Catchpole, Eunice Choi, Myrtede Alfred, Kate Cohen, Daniel Shouhed, Jennifer Anger, Tara Cohen
Author Information
  1. Falisha Kanji: Department of Surgery, Cedars-Sinai Medical Center, 8700 Beverly Blvd Suite 8215NT, Los Angeles, CA, 90048, USA.
  2. Ken Catchpole: Medical University of South Carolina, Charleston, SC, USA.
  3. Eunice Choi: Department of Surgery, Cedars-Sinai Medical Center, 8700 Beverly Blvd Suite 8215NT, Los Angeles, CA, 90048, USA.
  4. Myrtede Alfred: Medical University of South Carolina, Charleston, SC, USA.
  5. Kate Cohen: Enterprise Information Services, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
  6. Daniel Shouhed: Department of Surgery, Cedars-Sinai Medical Center, 8700 Beverly Blvd Suite 8215NT, Los Angeles, CA, 90048, USA.
  7. Jennifer Anger: Department of Surgery, Cedars-Sinai Medical Center, 8700 Beverly Blvd Suite 8215NT, Los Angeles, CA, 90048, USA.
  8. Tara Cohen: Department of Surgery, Cedars-Sinai Medical Center, 8700 Beverly Blvd Suite 8215NT, Los Angeles, CA, 90048, USA. Tara.cohen@cshs.org. ORCID

Abstract

BACKGROUND: The introduction of a robot into the surgical suite changes the dynamics of the work-system, creating new opportunities for both success and failure. An extensive amount of research has identified a range of barriers to safety and efficiency in Robotic Assisted Surgery (RAS), such as communication breakdowns, coordination failures, equipment issues, and technological malfunctions. However, there exists very few solutions to these barriers. The purpose of this review was to identify the gap between identified RAS work-system barriers and interventions developed to address those barriers.
METHODS: A search from three databases (PubMed, Web of Science, and Ovid Medline) was conducted for literature discussing system-level interventions for RAS that were published between January 1, 1985 to March 17, 2020. Articles describing interventions for systems-level issues that did not involve technical skills in RAS were eligible for inclusion.
RESULTS: A total of 30 articles were included in the review. Only seven articles (23.33%) implemented and evaluated interventions, while the remaining 23 articles (76.67%) provided suggested interventions for issues in RAS. Major barriers identified included disruptions, ergonomic issues, safety and efficiency, communication, and non-technical skills. Common solutions involved team training, checklist development, and workspace redesign.
CONCLUSION: The review identified a significant gap between issues and solutions in RAS. While it is important to continue identifying how the complexities of RAS affect operating room (OR) and team dynamics, future work will need to address existing issues with interventions that have been tested and evaluated. In particular, improving RAS-associated non-technical skills, task management, and technology management may lead to improved OR dynamics associated with greater efficiency, reduced costs, and better systems-level outcomes.

Keywords

References

  1. BJU Int. 2016 Jul;118(1):132-9 [PMID: 26800347]
  2. Ergonomics. 2018 Jan;61(1):26-39 [PMID: 28271956]
  3. J Am Coll Surg. 2007 Apr;204(4):533-40 [PMID: 17382211]
  4. BJU Int. 2018 Jul;122(1):99-105 [PMID: 29388382]
  5. Anaesthesia. 2006 Jun;61(6):548-52 [PMID: 16704588]
  6. J Robot Surg. 2015 Mar;9(1):11-8 [PMID: 26530966]
  7. AORN J. 2007 Sep;86(3):384-94; quiz 395-8 [PMID: 17822643]
  8. J Crit Care. 2006 Sep;21(3):231-5 [PMID: 16990087]
  9. Qual Saf Health Care. 2006 Feb;15(1):17-22 [PMID: 16456205]
  10. Ochsner J. 2013 Winter;13(4):517-24 [PMID: 24358000]
  11. J Surg Res. 2016 Oct;205(2):296-304 [PMID: 27664876]
  12. AORN J. 2020 Jan;111(1):87-96 [PMID: 31886556]
  13. BMJ Qual Saf. 2018 Feb;27(2):148-154 [PMID: 28689193]
  14. Int Urogynecol J. 2019 Dec;30(12):2177-2182 [PMID: 31041500]
  15. PLoS One. 2020 Jan 10;15(1):e0220214 [PMID: 31923185]
  16. World J Surg. 2018 Nov;42(11):3599-3607 [PMID: 29845381]
  17. J Endourol. 2017 Jan;31(1):27-31 [PMID: 27806637]
  18. BMJ Open. 2019 Jun 14;9(6):e028635 [PMID: 31203248]
  19. PLoS Med. 2009 Jul 21;6(7):e1000097 [PMID: 19621072]
  20. Urology. 2018 Apr;114:105-113 [PMID: 29371162]
  21. Surg Endosc. 2017 Feb;31(2):877-886 [PMID: 27495330]
  22. Interact Cardiovasc Thorac Surg. 2010 Apr;10(4):526-9 [PMID: 20100706]
  23. J Endourol. 2015 Nov;29(11):1282-8 [PMID: 26102332]
  24. Arch Surg. 2008 Jan;143(1):12-7; discussion 18 [PMID: 18209148]
  25. Obstet Gynecol. 2014 Jan;123(1):5-12 [PMID: 24463657]
  26. BJU Int. 2013 Jun;111(7):1161-74 [PMID: 23601155]
  27. Appl Ergon. 2019 Jul;78:270-276 [PMID: 29478667]
  28. Eur Urol Focus. 2018 Sep;4(5):674-676 [PMID: 30217631]
  29. Patient Saf Surg. 2013 Jun 03;7(1):19 [PMID: 23731776]
  30. World J Surg. 2016 Oct;40(10):2550-7 [PMID: 27177648]
  31. Surgery. 2006 Jul;140(1):25-33 [PMID: 16857439]
  32. Surg Endosc. 2018 May;32(5):2533-2540 [PMID: 29264759]
  33. JAMA Surg. 2014 Aug;149(8):845-51 [PMID: 24990549]
  34. J Robot Surg. 2019 Apr;13(2):283-288 [PMID: 30043126]
  35. BMJ Qual Saf. 2015 Sep;24(9):545-9 [PMID: 26089207]
  36. J Surg Educ. 2016 May-Jun;73(3):504-12 [PMID: 27068189]
  37. Turk J Urol. 2019 Sep 1;45(5):331-339 [PMID: 31509506]
  38. Ann Surg. 2013 Dec;258(6):856-71 [PMID: 24169160]
  39. Can J Urol. 2017 Jun;24(3):8814-8821 [PMID: 28646936]
  40. Surg Endosc. 2016 Sep;30(9):3749-61 [PMID: 26675938]
  41. AORN J. 2016 Aug;104(2):145-52 [PMID: 27472974]
  42. Minerva Anestesiol. 2014 Jan;80(1):83-8 [PMID: 23877310]
  43. Syst Rev. 2016 Dec 5;5(1):210 [PMID: 27919275]
  44. N Engl J Med. 2010 Aug 19;363(8):701-4 [PMID: 20818872]
  45. Appl Ergon. 2019 Jul;78:251-262 [PMID: 29525267]
  46. J Minim Invasive Gynecol. 2013 Sep-Oct;20(5):648-55 [PMID: 23747116]
  47. J Robot Surg. 2015 Mar;9(1):97-8 [PMID: 26530978]
  48. Urology. 2016 Jun;92:33-7 [PMID: 26966039]
  49. J Clin Nurs. 2020 Jan;29(1-2):60-74 [PMID: 31495000]
  50. JSLS. 2016 Jul-Sep;20(3): [PMID: 27493469]
  51. Urology. 2017 Nov;109:38-43 [PMID: 28827196]
  52. JSLS. 2014 Oct-Dec;18(4): [PMID: 25489213]

Grants

  1. R01 HS026491/AHRQ HHS

MeSH Term

Checklist
Communication
Efficiency
Ergonomics
Humans
Operating Rooms
Robotic Surgical Procedures
Surgeons

Word Cloud

Created with Highcharts 10.0.0RASinterventionsissuesbarriersidentifiedsolutionsreviewdynamicsefficiencygapskillsarticleswork-systemsafetycommunicationaddresssystems-levelincluded23evaluatednon-technicalteamtrainingORmanagementBACKGROUND:introductionrobotsurgicalsuitechangescreatingnewopportunitiessuccessfailureextensiveamountresearchrangeRoboticAssistedSurgerybreakdownscoordinationfailuresequipmenttechnologicalmalfunctionsHoweverexistspurposeidentifydevelopedMETHODS:searchthreedatabasesPubMedWebScienceand OvidMedlineconductedliteraturediscussingsystem-levelpublishedJanuary11985March172020ArticlesdescribinginvolvetechnicaleligibleinclusionRESULTS:total30seven33%implementedremaining7667%providedsuggestedMajordisruptionsergonomicCommoninvolvedchecklistdevelopmentworkspaceredesignCONCLUSION:significantimportantcontinueidentifyingcomplexitiesaffectoperatingroomfutureworkwillneedexistingtestedparticularimprovingRAS-associatedtasktechnologymayleadimprovedassociatedgreaterreducedcostsbetteroutcomesWork-systemrobotic-assistedsurgery:systematicexploringchallengesChecklistsCommunicationHumanfactorsSimulationTeam

Similar Articles

Cited By