Brain tumor detection and multi-classification using advanced deep learning techniques.

Tariq Sadad, Amjad Rehman, Asim Munir, Tanzila Saba, Usman Tariq, Noor Ayesha, Rashid Abbasi
Author Information
  1. Tariq Sadad: Department of Computer Science, University of Central Punjab, Lahore, Pakistan. ORCID
  2. Amjad Rehman: Artificial Intelligence & Data Analytics Lab, CCIS Prince Sultan University, Riyadh, Saudi Arabia. ORCID
  3. Asim Munir: Department of Computer Science and Software Engineering, International Islamic University, Islamabad, Pakistan.
  4. Tanzila Saba: Artificial Intelligence & Data Analytics Lab, CCIS Prince Sultan University, Riyadh, Saudi Arabia. ORCID
  5. Usman Tariq: College of Computer Engineering and Science, Prince Sattam bin Abdulaziz University, Alkharj, Saudi Arabia. ORCID
  6. Noor Ayesha: School of Clinical Medicine, Zhengzhou University, Zhengzhou, Henan, China. ORCID
  7. Rashid Abbasi: School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.

Abstract

A brain tumor is an uncontrolled development of brain cells in brain cancer if not detected at an early stage. Early brain tumor diagnosis plays a crucial role in treatment planning and patients' survival rate. There are distinct forms, properties, and therapies of brain tumors. Therefore, manual brain tumor detection is complicated, time-consuming, and vulnerable to error. Hence, automated computer-assisted diagnosis at high precision is currently in demand. This article presents segmentation through Unet architecture with ResNet50 as a backbone on the Figshare data set and achieved a level of 0.9504 of the intersection over union (IoU). The preprocessing and data augmentation concept were introduced to enhance the classification rate. The multi-classification of brain tumors is performed using evolutionary algorithms and reinforcement learning through transfer learning. Other deep learning methods such as ResNet50, DenseNet201, MobileNet V2, and InceptionV3 are also applied. Results thus obtained exhibited that the proposed research framework performed better than reported in state of the art. Different CNN, models applied for tumor classification such as MobileNet V2, Inception V3, ResNet50, DenseNet201, NASNet and attained accuracy 91.8, 92.8, 92.9, 93.1, 99.6%, respectively. However, NASNet exhibited the highest accuracy.

Keywords

References

  1. Abbas, A., Saba, T., Rehman, A., Mehmood, Z., Javaid, N., Tahir, M., … Shah, R. (2019). Plasmodium species aware based quantification of malaria, parasitemia in light microscopy thin blood smear. Microscopy Research and Technique, 82(7), 1198-1214. https://doi.org/10.1002/jemt.23269
  2. Abbas, N., Saba, T., Mehmood, Z., Rehman, A., Islam, N., & Ahmed, K. T. (2019). An automated nuclei segmentation of leukocytes from microscopic digital images. Pakistan Journal of Pharmaceutical Sciences, 32(5), 2123-2138.
  3. Abbas, N., Saba, T., Mohamad, D., Rehman, A., Almazyad, A. S., & Al-Ghamdi, J. S. (2018). Machine aided malaria parasitemia detection in Giemsa-stained thin blood smears. Neural Computing and Applications, 29(3), 803-818. https://doi.org/10.1007/s00521-016-2474-6
  4. Abbas, N., Saba, T., Rehman, A., Mehmood, Z., Kolivand, H., Uddin, M., & Anjum, A. (2019). Plasmodium life cycle stage classification-based quantification of malaria parasitaemia in thin blood smears. Microscopy Research and Technique. https://doi.org/10.1002/jemt.2317082(3):283-295.
  5. Adeel, A., Khan, M. A., Akram, T., Sharif, A., Yasmin, M., Saba, T., & Javed, K. (2020). Entropy-controlled deep features selection framework for grape leaf diseases recognition. Expert Systems.
  6. Afza, F., Khan, M. A., Sharif, M., & Rehman, A. (2019). Microscopic skin laceration segmentation and classification: A framework of statistical normal distribution and optimal feature selection. Microscopy Research and Technique, 82(9), 1471-1488.
  7. Al-Ameen, Z., Sulong, G., Rehman, A., Al-Dhelaan, A., Saba, T., & Al-Rodhaan, M. (2015). An innovative technique for contrast enhancement of computed tomography images using normalized gamma-corrected contrast-limited adaptive histogram equalization. EURASIP Journal on Advances in Signal Processing, 32. https://doi.org/10.1186/s13634-015-0214-1
  8. Amin, J., Sharif, M., Raza, M., Saba, T., & Anjum, M. A. (2019). Brain tumor detection using statistical and machine learning method. Computer Methods and Programs in Biomedicine, 177, 69-79.
  9. Amin, J., Sharif, M., Raza, M., Saba, T., & Rehman, A. (2019). Brain tumor classification: Feature fusion. 2019 international conference on computer and information sciences (ICCIS) (pp. 1-6). IEEE.
  10. Amin, J., Sharif, M., Raza, M., Saba, T., Sial, R., & Shad, S. A. (2020). Brain tumor detection: A long short-term memory (LSTM)-based learning model. Neural Computing and Applications. 32 15965-15973.
  11. Amin, J., Sharif, M., Rehman, A., Raza, M., & Mufti, M. R. (2018). Diabetic retinopathy detection and classification using hybrid feature set. Microscopy Research and Technique, 81(9), 990-996.
  12. Amin, J., Sharif, M., Yasmin, M., Saba, T., & Raza, M. (2019). Use of machine intelligence to conduct analysis of human brain data for detection of abnormalities in its cognitive functions. Multimedia Tools and Applications, 79(15), 10955-10973. https://doi.org/10.1007/s11042-019-7324-y
  13. Chen, Y., Meng, G., Zhang, Q., Xiang, S., Huang, C., Mu, L., & Wang, X. (2018). Reinforced Evolutionary Neural Architecture Search, arXiv preprint.
  14. Cheng, J. (2017). Brain tumor dataset. Figshare. https://doi.org/10.6084/m9.figshare.1512427.v5
  15. DenseNet: Better CNN Model than ResNet (n.d.). Retrieved from http://www.programmersought.com/article/%0A7780717554/
  16. Ejaz, K., Rahim, M. S. M., Bajwa, U. I., Chaudhry, H., Rehman, A., & Ejaz, F. (2020). Hybrid segmentation method with confidence region detection for tumor identification. IEEE Access. https://doi.org/10.1109/ACCESS.2020.3016627
  17. Ejaz, K., Rahim, M. S. M., Bajwa, U. I., Rana, N., & Rehman, A. (2019). An unsupervised learning with feature approach for brain tumor segmentation using magnetic resonance imaging. Proceedings of the 2019 9th International Conference on Bioscience, Biochemistry and Bioinformatics (pp. 1-7).
  18. Ejaz, K., Rahim, M. S. M., Rehman, A., Chaudhry, H., Saba, T., & Ejaz, A. (2018). Segmentation method for pathological brain tumor and accurate detection using MRI. International Journal of Advanced Computer Science and Applications, 9(8), 394-401.
  19. Fahad, H. M., Khan, M. U. G., Saba, T., Rehman, A., & Iqbal, S. (2018). Microscopic abnormality classification of cardiac murmurs using ANFIS and HMM. Microscopy Research and Technique, 81(5), 449-457. https://doi.org/10.1002/jemt.22998
  20. He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-778).
  21. Husham, A., Alkawaz, M. H., Saba, T., Rehman, A., & Alghamdi, J. S. (2016). Automated nuclei segmentation of malignant using level sets. Microscopy Research and Technique, 79(10), 993-997. https://doi.org/10.1002/jemt.22733
  22. Hussain, N., Khan, M. A., Sharif, M., Khan, S. A., Albesher, A. A., Saba, T., & Armaghan, A. (2020). A deep neural network and classical features-based scheme for objects recognition: An application for machine inspection. Multimedia Tools and Applications. https://doi.org/10.1007/s11042-020-08852-3
  23. Iftikhar, S., Fatima, K., Rehman, A., Almazyad, A. S., & Saba, T. (2017). An evolution-based hybrid approach for heart diseases classification and associated risk factors identification. Biomedical Research, 28(8), 3451-3455.
  24. Iqbal, S., Ghani, M. U., Saba, T., & Rehman, A. (2018). Brain tumor segmentation in multi-spectral MRI using convolutional neural networks (CNN). Microscopy Research and Technique, 81(4), 419-427. https://doi.org/10.1002/jemt.22994
  25. Iqbal, S., Khan, M.U.G., Saba, T. Mehmood, Z. Javaid, N., Rehman,A., Abbasi, R. (2019) Deep learning model integrating features and novel classifiers fusion for brain tumor segmentation, Microscopy Research and Technique, 82(8); 1302-1315, https://doi.org/10.1002/jemt.23281
  26. Iqbal, S., Khan, M. U. G., Saba, T., & Rehman, A. (2017). Computer assisted brain tumor type discrimination using magnetic resonance imaging features. Biomedical Engineering Letters, 8(1), 5-28. https://doi.org/10.1007/s13534-017-0050-3
  27. Jamal, A., Hazim Alkawaz, M., Rehman, A., & Saba, T. (2017). Retinal imaging analysis based on vessel detection. Microscopy Research and Technique 2017, 80(17), 799-811. https://doi.org/10.1002/jemt
  28. Javed, R., Rahim, M. S. M., & Saba, T. (2019). An improved framework by mapping salient features for skin lesion detection and classification using the optimized hybrid features. International Journal of Advanced Trends in Computer Science and Engineering, 8(1), 95-101.
  29. Javed, R., Rahim, M. S. M., Saba, T., & Rashid, M. (2019). Region-based active contour JSEG fusion technique for skin lesion segmentation from dermoscopic images. Biomedical Research, 30(6), 1-10.
  30. Javed, R., Rahim, M. S. M., Saba, T., & Rehman, A. (2020). A comparative study of features selection for skin lesion detection from dermoscopic images. Network Modeling Analysis in Health Informatics and Bioinformatics, 9(1), 4.
  31. Javed, R., Saba, T., Shafry, M., Rahim, M. (2020). An Intelligent Saliency Segmentation Technique and Classification of Low Contrast Skin Lesion Dermoscopic Images Based on Histogram Decision. 2019 12th International Conference on Developments in eSystems Engineering (DeSE) (pp. 164-169).
  32. Khan, M. A., Akram, T., Sharif, M., Javed, K., Raza, M., & Saba, T. (2020). An automated system for cucumber leaf diseased spot detection and classification using improved saliency method and deep features selection. Multimedia Tools and Applications, 1-30.
  33. Khan, M. A., Akram, T., Sharif, M., Saba, T., Javed, K., Lali, I. U., … Rehman, A. (2019). Construction of saliency map and hybrid set of features for efficient segmentation and classification of skin lesion. Microscopy Research and Technique, 82(5), 741-763. http://doi.org/10.1002/jemt.23220
  34. Khan, M. A., Ashraf, I., Alhaisoni, M., Damaševičius, R., Scherer, R., Rehman, A., & Bukhari, S. A. C. (2020). Multimodal brain tumor classification using deep learning and robust feature selection: A machine learning application for radiologists. Diagnostics, 10, 565.
  35. Khan, M. A., Javed, M. Y., Sharif, M., Saba, T., & Rehman, A. (2019). Multi-model deep neural network-based features extraction and optimal selection approach for skin lesion classification. 2019 international conference on computer and information sciences (ICCIS) (pp. 1-7). IEEE.
  36. Khan, M. A., Lali, I. U., Rehman, A., Ishaq, M., Sharif, M., Saba, T., … Akram, T. (2019). Brain tumor detection and classification: A framework of marker-based watershed algorithm and multilevel priority features selection. Microscopy Research and Technique, 82(6), 909-922. https://doi.org/10.1002/jemt.23238
  37. Khan, M. A., Sharif, M., Akram, T., Raza, M., Saba, T., & Rehman, A. (2020). Hand-crafted and deep convolutional neural network features fusion and selection strategy: An application to intelligent human action recognition. Applied Soft Computing, 87, 105986.
  38. Khan, M. A., Sharif, M. I., Raza, M., Anjum, A., Saba, T., & Shad, S. A. (2019). Skin lesion segmentation and classification: A unified framework of deep neural network features fusion and selection. Expert Systems, e12497.
  39. Khan, M. W., Sharif, M., Yasmin, M., & Saba, T. (2017). CDR based glaucoma detection using fundus images: A review. International Journal of Applied Pattern Recognition, 4(3), 261-306.
  40. Khan, M. Z., Jabeen, S., Khan, M. U. G., Saba, T., Rehmat, A., Rehman, A., & Tariq, U. (2020). A realistic image generation of face from text description using the fully trained generative adversarial networks. IEEE Access.
  41. Khan, S. A., Nazir, M., Khan, M. A., Saba, T., Javed, K., Rehman, A., … Awais, M. (2019). Lungs nodule detection framework from computed tomography images using support vector machine. Microscopy Research and Technique, 82(8), 1256-1266.
  42. Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet classification with deep convolutional neural networks. Advances in Neural Information Processing Systems.
  43. LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE., 86, 2278-2324. https://doi.org/10.1109/5.726791
  44. Liaqat, A., Khan, M. A., Sharif, M., Mittal, M., Saba, T., Manic, K. S., & Al Attar, F. N. H. (2020). Gastric tract infections detection and classification from wireless capsule endoscopy using computer vision techniques: A review. Current Medical Imaging.
  45. Lung, J. W. J., Salam, M. S. H., Rehman, A., Rahim, M. S. M., & Saba, T. (2014). Fuzzy phoneme classification using multi-speaker vocal tract length normalization. IETE Technical Review, 31(2), 128-136. https://doi.org/10.1080/02564602.2014.892669
  46. Majid, A., Khan, M. A., Yasmin, M., Rehman, A., Yousafzai, A., & Tariq, U. (2020). Classification of stomach infections: A paradigm of convolutional neural network along with classical features fusion and selection. Microscopy Research and Technique, 83(5), 562-576.
  47. Marie-Sainte, S. L., Aburahmah, L., Almohaini, R., & Saba, T. (2019). Current techniques for diabetes prediction: Review and case study. Applied Sciences, 9(21), 4604.
  48. Marie-Sainte, S. L., Saba, T., Alsaleh, D., Alotaibi, A., & Bin, M. (2019). An improved strategy for predicting diagnosis, survivability, and recurrence of breast cancer. Journal of Computational and Theoretical Nanoscience, 16(9), 3705-3711.
  49. Mashood Nasir, I., Attique Khan, M., Alhaisoni, M., Saba, T., Rehman, A., & Iqbal, T. (2020). A hybrid deep learning architecture for the classification of superhero fashion products: An application for medical-tech classification. Computer Modeling in Engineering & Sciences, 124(3), 1017-1033.
  50. Mittal, A., Kumar, D., Mittal, M., Saba, T., Abunadi, I., Rehman, A., & Roy, S. (2020). Detecting pneumonia using convolutions and dynamic capsule routing for chest X-ray images. Sensors, 20(4), 1068.
  51. Mughal, B., Muhammad, N., Sharif, M., Rehman, A., & Saba, T. (2018). Removal of pectoral muscle based on topographic map and shape-shifting silhouette. BMC Cancer, 18(1), 1-14.
  52. Mughal, B., Muhammad, N., Sharif, M., Saba, T., & Rehman, A. (2017). Extraction of breast border and removal of pectoral muscle in wavelet domain. Biomedical Research, 28(11), 5041-5043.
  53. Mughal, B., Sharif, M., Muhammad, N., & Saba, T. (2018). A novel classification scheme to decline the mortality rate among women due to breast tumor. Microscopy Research and Technique, 81(2), 171-180.
  54. Nazir, M., Khan, M. A., Saba, T., & Rehman, A. (2019). Brain tumor detection from MRI images using multi-level wavelets. 2019, IEEE International Conference on Computer and Information Sciences (ICCIS) (pp. 1-5).
  55. Özyurt, F., Sert, E., Avci, E., & Dogantekin, E. (2019). Brain tumor detection based on convolutional neural network with neutrosophic expert maximum fuzzy sure entropy. Measurement, 147, 106830.
  56. Perveen, S., Shahbaz, M., Saba, T., Keshavjee, K., Rehman, A., & Guergachi, A. (2020). Handling irregularly sampled longitudinal data and prognostic modeling of diabetes using machine learning technique. IEEE Access, 8, 21875-21885.
  57. Qureshi, I., Khan, M. A., Sharif, M., Saba, T., & Ma, J. (2020). Detection of glaucoma based on cup-to-disc ratio using fundus images international. Journal of Intelligent Systems Technologies and Applications, 19(1), 1-16. https://doi.org/10.1504/IJISTA.2020.105172
  58. Radhika, K., Devika, K., Aswathi, T., & Padma, S.. Switzerland: (2020). Performance analysis of NASNet on unconstrained ear recognition. In Studies in Computational Intelligence. https://doi.org/10.1007/978-3-030-33820-6_3
  59. Ramzan, F., Khan, M. U. G., Iqbal, S., Saba, T., & Rehman, A. (2020). Volumetric segmentation of brain regions from MRI scans using 3D convolutional neural networks. IEEE Access, 8, 103697-103709.
  60. Ramzan, F., Khan, M. U. G., Rehmat, A., Iqbal, S., Saba, T., Rehman, A., & Mehmood, Z. (2020). A deep learning approach for automated diagnosis and multi-class classification of Alzheimer's disease stages using resting-state fMRI and residual neural networks. Journal of Medical Systems, 44(2), 37.
  61. Rehman, A., Abbas, N., Saba, T., Mahmood, T., & Kolivand, H. (2018). Rouleaux red blood cells splitting in microscopic thin blood smear images via local maxima, circles drawing, and mapping with original RBCs. Microscopic Research and Technique, 81(7), 737-744. https://doi.org/10.1002/jemt.23030
  62. Rehman, A., Abbas, N., Saba, T., Mehmood, Z., Mahmood, T., & Ahmed, K. T. (2018). Microscopic malaria parasitemia diagnosis and grading on benchmark datasets. Microscopic Research and Technique, 81(9), 1042-1058. https://doi.org/10.1002/jemt.23071
  63. Rehman, A., Abbas, N., Saba, T., Rahman, S. I. U., Mehmood, Z., & Kolivand, K. (2018). Classification of acute lymphoblastic leukemia using deep learning. Microscopy Research & Technique, 81(11), 1310-1317. https://doi.org/10.1002/jemt.23139
  64. Rehman, A., Khan, M. A., Mehmood, Z., Saba, T., Sardaraz, M., & Rashid, M. (2020). Microscopic melanoma detection and classification: A framework of pixel-based fusion and multilevel features reduction. Microscopy Research and Technique, 83(4), 410-423. https://doi.org/10.1002/jemt.23429
  65. Rehman, A., Khan, M. A., Saba, T., Mehmood, Z., Tariq, U., & Ayesha, N. (2021). Microscopic brain tumor detection and classification using 3D CNN and feature selection architecture. Microscopic Research and Technique.128(1):133-149.
  66. Ronneberger, O., Fischer, P., & Brox, T. (2015) U-net: convolutional networks for biomedical image segmentation. Medical Image Computing and Computer-Assisted Intervention-MICCAI 2015. Lecture Notes in Computer Science. Medical Image Computing and Computer-Assisted Intervention-MICCAI 2015.
  67. Saba, T. (2017). Halal food identification with neural assisted enhanced RFID antenna. Biomedical Research, 28(18), 7760-7762.
  68. Saba, T. (2019). Automated lung nodule detection and classification based on multiple classifiers voting. Microscopy Research and Technique, 82(9), 1601-1609.
  69. Saba, T. (2020). Recent advancement in cancer detection using machine learning: Systematic survey of decades, comparisons and challenges. Journal of Infection and Public Health, 13(9), 1274-1289.
  70. Saba, T., Al-Zahrani, S., & Rehman, A. (2012). Expert system for offline clinical guidelines and treatment. Life Science Journal, 9(4), 2639-2658.
  71. Saba, T., Bokhari, S. T. F., Sharif, M., Yasmin, M., & Raza, M. (2018). Fundus image classification methods for the detection of glaucoma: A review. Microscopy Research and Technique, 81(10), 1105-1121.
  72. Saba, T., Haseeb, K., Ahmed, I., & Rehman, A. (2020). Secure and energy-efficient framework using internet of medical things for e-healthcare. Journal of Infection and Public Health, 13(10), 1567-1575.
  73. Saba, T., Khan, M. A., Rehman, A., & Marie-Sainte, S. L. (2019). Region extraction and classification of skin cancer: A heterogeneous framework of deep CNN features fusion and reduction. Journal of Medical System, 43, 289. https://doi.org/10.1007/s10916-019-1413-3
  74. Saba, T., Khan, S. U., Islam, N., Abbas, N., Rehman, A., Javaid, N., & Anjum, A. (2019). Cloud-based decision support system for the detection and classification of malignant cells in breast cancer using breast cytology images. Microscopy Research and Technique, 82(6), 775-785.
  75. Saba, T., Mohamed, A. S., El-Affendi, M., Amin, J., & Sharif, M. (2020). Brain tumor detection using fusion of hand crafted and deep learning features. Cognitive Systems Research, 59, 221-230.
  76. Saba, T., Rehman, A., Mehmood, Z., Kolivand, H., & Sharif, M. (2018). Image enhancement and segmentation techniques for detection of knee joint diseases: A survey. Current Medical Imaging Reviews, 14(5), 704-715. https://doi.org/10.2174/1573405613666170912164546
  77. Saba, T., Sameh, A., Khan, F., Shad, S. A., & Sharif, M. (2019). Lung nodule detection based on ensemble of hand crafted and deep features. Journal of Medical Systems, 43(12), 332.
  78. Sadad, T., Munir, A., Saba, T., & Hussain, A. (2018). Fuzzy C-means and region growing based classification of tumor from mammograms using hybrid texture feature. Journal of Computational Science, 29, 34-45.
  79. Sajjad, M., Khan, S., Muhammad, K., Wu, W., Ullah, A., & Baik, S. W. (2019). Multi-grade brain tumor classification using deep CNN with extensive data augmentation. Journal of Computational Science, 30, 174-182.
  80. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., & Chen, L.-C. (2018) MobileNetV2: Inverted residuals and linear bottlenecks. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. doi: https://doi.org/10.1109/CVPR.2018.00474
  81. Seetha, J., & Raja, S. S. (2018). Brain tumor classification using convolutional neural networks. Biomedical Pharmacology Journal, 11, 1457-1461.
  82. Simonyan, K. & Zisserman, A. (2015). Very deep convolutional networks for large-scale image recognition. 3rd International Conference on Learning Representations, ICLR 2015-Conference Track Proceedings.
  83. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., & Rabinovich, A. (2015). Going deeper with convolutions. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. doi: https://doi.org/10.1109/CVPR.2015.7298594.
  84. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J. & Wojna, Z. (2016) Rethinking the inception architecture for computer vision. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. doi: https://doi.org/10.1109/CVPR.2016.308.
  85. Ullah, H., Saba, T., Islam, N., Abbas, N., Rehman, A., Mehmood, Z., & Anjum, A. (2019). An ensemble classification of exudates in color fundus images using an evolutionary algorithm based optimal features selection. Microscopy Research and Technique, 82(4), 361-372.
  86. Viera, A. J., & Garrett, J. M. (2005). Understanding interobserver agreement: The kappa statistic. Family Medicine, 37(5), 360-363.
  87. Yousaf, K., Mehmood, Z., Awan, I. A., Saba, T., Alharbey, R., Qadah, T., & Alrige, M. A. (2019). A comprehensive study of mobile-health based assistive technology for the healthcare of dementia and Alzheimer's disease (AD). Health Care Management Science. 2019 1-23.
  88. Yousaf, K., Mehmood, Z., Saba, T., Rehman, A., Munshi, A. M., Alharbey, R., & Rashid, M. (2019). Mobile-health applications for the efficient delivery of health care facility to people with dementia (PwD) and support to their carers: A survey. BioMed Research International, 2019, 1-26.
  89. Zoph, B., & Le, Q. V. (2017) Neural architecture search with reinforcement learning. 5th International Conference on Learning Representations, ICLR 2017-Conference Track Proceedings.
  90. Zoph, B., Vasudevan, V., Shlens, J., & Le, Q. V. (2018) Learning transferable architectures for scalable image recognition. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. doi: https://doi.org/10.1109/CVPR.2018.00907

MeSH Term

Brain
Brain Neoplasms
Deep Learning
Early Detection of Cancer
Humans
Neural Networks, Computer

Word Cloud

Created with Highcharts 10.0.0braintumorlearningResNet50NASNetcancerdiagnosisratetumorsdetectiondataclassificationmulti-classificationperformedusingdeepDenseNet201MobileNetV2appliedexhibitedaccuracy892uncontrolleddevelopmentcellsdetectedearlystageEarlyplayscrucialroletreatmentplanningpatients'survivaldistinctformspropertiestherapiesThereforemanualcomplicatedtime-consumingvulnerableerrorHenceautomatedcomputer-assistedhighprecisioncurrentlydemandarticlepresentssegmentationUnetarchitecturebackboneFigsharesetachievedlevel09504intersectionunionIoUpreprocessingaugmentationconceptintroducedenhanceevolutionaryalgorithmsreinforcementtransfermethodsInceptionV3alsoResultsthusobtainedproposedresearchframeworkbetterreportedstateartDifferentCNNmodelsInceptionV3attained919931996%respectivelyHoweverhighestBrainadvancedtechniquesWHOhealthriskshealthcare

Similar Articles

Cited By