Increasing Nrf2 Activity as a Treatment Approach in Neuropsychiatry.

G Morris, A J Walker, K Walder, M Berk, W Marx, A F Carvalho, M Maes, B K Puri
Author Information
  1. G Morris: Institute for Mental and Physical Health and Clinical Translation (IMPACT), Barwon Health, School of Medicine, Deakin University, Geelong, VIC, Australia.
  2. A J Walker: Institute for Mental and Physical Health and Clinical Translation (IMPACT), Barwon Health, School of Medicine, Deakin University, Geelong, VIC, Australia.
  3. K Walder: Institute for Mental and Physical Health and Clinical Translation (IMPACT), Barwon Health, School of Medicine, Deakin University, Geelong, VIC, Australia.
  4. M Berk: Institute for Mental and Physical Health and Clinical Translation (IMPACT), Barwon Health, School of Medicine, Deakin University, Geelong, VIC, Australia.
  5. W Marx: Institute for Mental and Physical Health and Clinical Translation (IMPACT), Barwon Health, School of Medicine, Deakin University, Geelong, VIC, Australia.
  6. A F Carvalho: Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
  7. M Maes: Institute for Mental and Physical Health and Clinical Translation (IMPACT), Barwon Health, School of Medicine, Deakin University, Geelong, VIC, Australia.
  8. B K Puri: C.A.R., Cambridge, UK. bpuri@cantab.com. ORCID

Abstract

Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor encoded by NFE2L2. Under oxidative stress, Nrf2 does not undergo its normal cytoplasmic degradation but instead travels to the nucleus, where it binds to a DNA promoter and initiates transcription of anti-oxidative genes. Nrf2 upregulation is associated with increased cellular levels of glutathione disulfide, glutathione peroxidase, glutathione transferases, thioredoxin and thioredoxin reductase. Given its key role in governing the cellular antioxidant response, upregulation of Nrf2 has been suggested as a common therapeutic target in neuropsychiatric illnesses such as major depressive disorder, bipolar disorder and schizophrenia, which are associated with chronic oxidative and nitrosative stress, characterised by elevated levels of reactive oxygen species, nitric oxide and peroxynitrite. These processes lead to extensive lipid peroxidation, protein oxidation and carbonylation, and oxidative damage to nuclear and mitochondrial DNA. Intake of N-acetylcysteine, coenzyme Q and melatonin is accompanied by increased Nrf2 activity. N-acetylcysteine intake is associated with improved cerebral mitochondrial function, decreased central oxidative and nitrosative stress, reduced neuroinflammation, alleviation of endoplasmic reticular stress and suppression of the unfolded protein response. Coenzyme Q, which acts as a superoxide scavenger in neuroglial mitochondria, instigates mitohormesis, ameliorates lipid peroxidation in the inner mitochondrial membrane, activates uncoupling proteins, promotes mitochondrial biogenesis and has positive effects on the plasma membrane redox system. Melatonin, which scavenges mitochondrial free radicals, inhibits mitochondrial nitric oxide synthase, restores mitochondrial calcium homeostasis, deacetylates and activates mitochondrial SIRT3, ameliorates increased permeability of the blood-brain barrier and intestine and counters neuroinflammation and glutamate excitotoxicity.

Keywords

References

  1. Allen J, Romay-Tallon R, Brymer KJ, Caruncho HJ, Kalynchuk LE (2018) Mitochondria and mood: mitochondrial dysfunction as a key player in the manifestation of depression. Front Neurosci 12:386–386. https://doi.org/10.3389/fnins.2018.00386 [DOI: 10.3389/fnins.2018.00386]
  2. Morris G, Walder K, McGee SL, Dean OM, Tye SJ, Maes M, Berk M (2017) A model of the mitochondrial basis of bipolar disorder. Neurosci Biobehav Rev 74(Pt A):1–20. https://doi.org/10.1016/j.neubiorev.2017.01.014 [DOI: 10.1016/j.neubiorev.2017.01.014]
  3. Rajasekaran A, Venkatasubramanian G, Berk M, Debnath M (2015) Mitochondrial dysfunction in schizophrenia: pathways, mechanisms and implications. Neurosci Biobehav Rev 48:10–21. https://doi.org/10.1016/j.neubiorev.2014.11.005 [DOI: 10.1016/j.neubiorev.2014.11.005]
  4. Abdallah CG, Jiang L, De Feyter HM, Fasula M, Krystal JH, Rothman DL, Mason GF, Sanacora G (2014) Glutamate metabolism in major depressive disorder. Am J Psychiatry 171(12):1320–1327. https://doi.org/10.1176/appi.ajp.2014.14010067 [DOI: 10.1176/appi.ajp.2014.14010067]
  5. Zuccoli GS, Saia-Cereda VM, Nascimento JM, Martins-de-Souza D (2017) The energy metabolism dysfunction in psychiatric disorders postmortem brains: focus on proteomic evidence. Front Neurosci 11:493. https://doi.org/10.3389/fnins.2017.00493 [DOI: 10.3389/fnins.2017.00493]
  6. Yoshimi N, Futamura T, Bergen SE, Iwayama Y, Ishima T, Sellgren C, Ekman CJ, Jakobsson J et al (2016) Cerebrospinal fluid metabolomics identifies a key role of isocitrate dehydrogenase in bipolar disorder: evidence in support of mitochondrial dysfunction hypothesis. Mol Psychiatry 21(11):1504–1510. https://doi.org/10.1038/mp.2015.217 [DOI: 10.1038/mp.2015.217]
  7. Kim Y, Santos R, Gage FH, Marchetto MC (2017) Molecular mechanisms of bipolar disorder: progress made and future challenges. Front Cell Neurosci 11:30. https://doi.org/10.3389/fncel.2017.00030 [DOI: 10.3389/fncel.2017.00030]
  8. Scaini G, Rezin GT, Carvalho AF, Streck EL, Berk M, Quevedo J (2016) Mitochondrial dysfunction in bipolar disorder: evidence, pathophysiology and translational implications. Neurosci Biobehav Rev 68:694–713. https://doi.org/10.1016/j.neubiorev.2016.06.040 [DOI: 10.1016/j.neubiorev.2016.06.040]
  9. Gassen NC, Rein T (2019) Is there a role of autophagy in depression and antidepressant action? Front Psychiatry 10:337. https://doi.org/10.3389/fpsyt.2019.00337 [DOI: 10.3389/fpsyt.2019.00337]
  10. Bansal Y, Kuhad A (2016) Mitochondrial dysfunction in depression. Curr Neuropharmacol 14(6):610–618. https://doi.org/10.2174/1570159X14666160229114755 [DOI: 10.2174/1570159X14666160229114755]
  11. Flippo KH, Strack S (2017) An emerging role for mitochondrial dynamics in schizophrenia. Schizophr Res 187:26–32. https://doi.org/10.1016/j.schres.2017.05.003 [DOI: 10.1016/j.schres.2017.05.003]
  12. Roberts RC (2017) Postmortem studies on mitochondria in schizophrenia. Schizophr Res 187:17–25. https://doi.org/10.1016/j.schres.2017.01.056 [DOI: 10.1016/j.schres.2017.01.056]
  13. Moylan S, Berk M, Dean OM, Samuni Y, Williams LJ, O’Neil A, Hayley AC, Pasco JA et al (2014) Oxidative & nitrosative stress in depression: why so much stress? Neurosci Biobehav Rev 45:46–62. https://doi.org/10.1016/j.neubiorev.2014.05.007 [DOI: 10.1016/j.neubiorev.2014.05.007]
  14. Maes M, Landucci Bonifacio K, Morelli NR, Vargas HO, Barbosa DS, Carvalho AF, Nunes SOV (2019) Major differences in neurooxidative and neuronitrosative stress pathways between major depressive disorder and types I and II bipolar disorder. Mol Neurobiol 56(1):141–156. https://doi.org/10.1007/s12035-018-1051-7 [DOI: 10.1007/s12035-018-1051-7]
  15. Anderson G, Maes M (2015) Bipolar disorder: role of immune-inflammatory cytokines, oxidative and nitrosative stress and tryptophan catabolites. Curr Psychiatry Rep 17(2):8. https://doi.org/10.1007/s11920-014-0541-1 [DOI: 10.1007/s11920-014-0541-1]
  16. Boll KM, Noto C, Bonifacio KL, Bortolasci CC, Gadelha A, Bressan RA, Barbosa DS, Maes M et al (2017) Oxidative and nitrosative stress biomarkers in chronic schizophrenia. Psychiatry Res 253:43–48. https://doi.org/10.1016/j.psychres.2017.03.038 [DOI: 10.1016/j.psychres.2017.03.038]
  17. Nasyrova RF, Ivashchenko DV, Ivanov MV, Neznanov NG (2015) Role of nitric oxide and related molecules in schizophrenia pathogenesis: biochemical, genetic and clinical aspects. Front Physiol 6:139. https://doi.org/10.3389/fphys.2015.00139 [DOI: 10.3389/fphys.2015.00139]
  18. Owe-Larsson B, Ekdahl K, Edbom T, Osby U, Karlsson H, Lundberg C, Lundberg M (2011) Increased plasma levels of thioredoxin-1 in patients with first episode psychosis and long-term schizophrenia. Prog Neuro-Psychopharmacol Biol Psychiatry 35(4):1117–1121. https://doi.org/10.1016/j.pnpbp.2011.03.012 [DOI: 10.1016/j.pnpbp.2011.03.012]
  19. Zhang XY, Chen DC, Xiu MH, Wang F, Qi LY, Sun HQ, Chen S, He SC et al (2009) The novel oxidative stress marker thioredoxin is increased in first-episode schizophrenic patients. Schizophr Res 113(2):151–157. https://doi.org/10.1016/j.schres.2009.05.016 [DOI: 10.1016/j.schres.2009.05.016]
  20. Aydin EP, Genc A, Dalkiran M, Uyar ET, Deniz I, Ozer OA, Karamustafalioglu KO (2018) Thioredoxin is not a marker for treatment-resistance depression but associated with cognitive function: an rTMS study. Prog Neuro-Psychopharmacol Biol Psychiatry 80(Pt C):322–328. https://doi.org/10.1016/j.pnpbp.2017.04.025 [DOI: 10.1016/j.pnpbp.2017.04.025]
  21. Bas A, Gultekin G, Incir S, Bas TO, Emul M, Duran A (2017) Level of serum thioredoxin and correlation with neurocognitive functions in patients with schizophrenia using clozapine and other atypical antipsychotics. Psychiatry Res 247:84–89. https://doi.org/10.1016/j.psychres.2016.11.021 [DOI: 10.1016/j.psychres.2016.11.021]
  22. Genc K, Genc S (2009) Oxidative stress and dysregulated Nrf2 activation in the pathogenesis of schizophrenia. Biosci Hypotheses 2(1):16–18. https://doi.org/10.1016/j.bihy.2008.10.005 [DOI: 10.1016/j.bihy.2008.10.005]
  23. Genc A, Kalelioglu T, Karamustafalioglu N, Tasdemir A, Gungor FC, Genc ES, Incir S, Ilnem C et al (2015) Level of plasma thioredoxin in male patients with manic episode at initial and post-electroconvulsive or antipsychotic treatment. Psychiatry Clin Neurosci 69(6):344–350. https://doi.org/10.1111/pcn.12244 [DOI: 10.1111/pcn.12244]
  24. Nucifora LG, Tanaka T, Hayes LN, Kim M, Lee BJ, Matsuda T, Nucifora FC Jr, Sedlak T et al (2017) Reduction of plasma glutathione in psychosis associated with schizophrenia and bipolar disorder in translational psychiatry. Transl Psychiatry 7(8):e1215. https://doi.org/10.1038/tp.2017.178 [DOI: 10.1038/tp.2017.178]
  25. Freed RD, Hollenhorst CN, Weiduschat N, Mao X, Kang G, Shungu DC, Gabbay V (2017) A pilot study of cortical glutathione in youth with depression. Psychiatry Res Neuroimaging 270:54–60. https://doi.org/10.1016/j.pscychresns.2017.10.001 [DOI: 10.1016/j.pscychresns.2017.10.001]
  26. Lapidus KAB, Gabbay V, Mao X, Johnson A, Murrough JW, Mathew SJ, Shungu DC (2014) In vivo 1H MRS study of potential associations between glutathione, oxidative stress and anhedonia in major depressive disorder. Neurosci Lett 569:74–79. https://doi.org/10.1016/j.neulet.2014.03.056 [DOI: 10.1016/j.neulet.2014.03.056]
  27. Gawryluk JW, Wang J-F, Andreazza AC, Shao L, Young LT (2011) Decreased levels of glutathione, the major brain antioxidant, in post-mortem prefrontal cortex from patients with psychiatric disorders. Int J Neuropsychopharmacol 14(1):123–130. https://doi.org/10.1017/s1461145710000805 [DOI: 10.1017/s1461145710000805]
  28. Maes M, Mihaylova I, Kubera M, Uytterhoeven M, Vrydags N, Bosmans E (2011) Lower whole blood glutathione peroxidase (GPX) activity in depression, but not in myalgic encephalomyelitis / chronic fatigue syndrome: another pathway that may be associated with coronary artery disease and neuroprogression in depression. Neuro Endocrinol Lett 32(2):133–140 [PMID: 21552194]
  29. Yao JK, Reddy RD, van Kammen DP (1999) Human plasma glutathione peroxidase and symptom severity in schizophrenia. Biol Psychiatry 45(11):1512–1515. https://doi.org/10.1016/s0006-3223(98)00184-x [DOI: 10.1016/s0006-3223(98)00184-x]
  30. Martin-Hernandez D, Caso JR, Javier Meana J, Callado LF, Madrigal JLM, Garcia-Bueno B, Leza JC (2018) Intracellular inflammatory and antioxidant pathways in postmortem frontal cortex of subjects with major depression: effect of antidepressants. J Neuroinflammation 15(1):251. https://doi.org/10.1186/s12974-018-1294-2 [DOI: 10.1186/s12974-018-1294-2]
  31. Zhang JC, Yao W, Dong C, Han M, Shirayama Y, Hashimoto K (2018) Keap1-Nrf2 signaling pathway confers resilience versus susceptibility to inescapable electric stress. Eur Arch Psychiatry Clin Neurosci 268(8):865–870. https://doi.org/10.1007/s00406-017-0848-0 [DOI: 10.1007/s00406-017-0848-0]
  32. Pei L, Wallace DC (2018) Mitochondrial etiology of neuropsychiatric disorders. Biol Psychiatry 83(9):722–730. https://doi.org/10.1016/j.biopsych.2017.11.018 [DOI: 10.1016/j.biopsych.2017.11.018]
  33. Morris G, Berk M (2015) The many roads to mitochondrial dysfunction in neuroimmune and neuropsychiatric disorders. BMC Med 13(1):68. https://doi.org/10.1186/s12916-015-0310-y [DOI: 10.1186/s12916-015-0310-y]
  34. Steckert AV, Valvassori SS, Moretti M, Dal-Pizzol F, Quevedo J (2010) Role of oxidative stress in the pathophysiology of bipolar disorder. Neurochem Res 35(9):1295–1301. https://doi.org/10.1007/s11064-010-0195-2 [DOI: 10.1007/s11064-010-0195-2]
  35. Bošković M, Vovk T, Kores Plesničar B, Grabnar I (2011) Oxidative stress in schizophrenia. Curr Neuropharmacol 9(2):301–312. https://doi.org/10.2174/157015911795596595 [DOI: 10.2174/157015911795596595]
  36. Drechsel DA, Patel M (2010) Respiration-dependent H2O2 removal in brain mitochondria via the thioredoxin/peroxiredoxin system. J Biol Chem 285(36):27850–27858. https://doi.org/10.1074/jbc.M110.101196 [DOI: 10.1074/jbc.M110.101196]
  37. Lopert P, Day BJ, Patel M (2012) Thioredoxin reductase deficiency potentiates oxidative stress, mitochondrial dysfunction and cell death in dopaminergic cells. PLoS One 7(11):e50683. https://doi.org/10.1371/journal.pone.0050683 [DOI: 10.1371/journal.pone.0050683]
  38. Lopert P, Patel M (2014) Nicotinamide nucleotide transhydrogenase (Nnt) links the substrate requirement in brain mitochondria for hydrogen peroxide removal to the thioredoxin/peroxiredoxin (Trx/Prx) system. J Biol Chem 289(22):15611–15620. https://doi.org/10.1074/jbc.M113.533653 [DOI: 10.1074/jbc.M113.533653]
  39. Kudin AP, Augustynek B, Lehmann AK, Kovács R, Kunz WS (2012) The contribution of thioredoxin-2 reductase and glutathione peroxidase to H2O2 detoxification of rat brain mitochondria. Biochimica et Biophysica Acta (BBA) - Bioenergetics 1817(10):1901–1906. https://doi.org/10.1016/j.bbabio.2012.02.023 [DOI: 10.1016/j.bbabio.2012.02.023]
  40. Treberg JR, Braun K, Selseleh P (2019) Mitochondria can act as energy-sensing regulators of hydrogen peroxide availability. Redox Biol 20:483–488. https://doi.org/10.1016/j.redox.2018.11.002 [DOI: 10.1016/j.redox.2018.11.002]
  41. Fang J, Holmgren A (2006) Inhibition of thioredoxin and thioredoxin reductase by 4-hydroxy-2-nonenal in vitro and in vivo. J Am Chem Soc 128(6):1879–1885. https://doi.org/10.1021/ja057358l [DOI: 10.1021/ja057358l]
  42. Morris G, Berk M, Klein H, Walder K, Galecki P, Maes M (2017) Nitrosative stress, hypernitrosylation, and autoimmune responses to Nitrosylated proteins: new pathways in neuroprogressive disorders including depression and chronic fatigue syndrome. Mol Neurobiol 54(6):4271–4291. https://doi.org/10.1007/s12035-016-9975-2 [DOI: 10.1007/s12035-016-9975-2]
  43. Stein LR, Imai S-i (2012) The dynamic regulation of NAD metabolism in mitochondria. Trends Endocrinol Metab 23(9):420–428. https://doi.org/10.1016/j.tem.2012.06.005 [DOI: 10.1016/j.tem.2012.06.005]
  44. Hopp A-K, Grüter P, Hottiger MO (2019) Regulation of glucose metabolism by NAD and ADP-ribosylation. Cells 8(8):890. https://doi.org/10.3390/cells8080890 [DOI: 10.3390/cells8080890]
  45. Wu YT, Wu SB, Lee WY, Wei YH (2010) Mitochondrial respiratory dysfunction-elicited oxidative stress and posttranslational protein modification in mitochondrial diseases. Ann N Y Acad Sci 1201:147–156. https://doi.org/10.1111/j.1749-6632.2010.05631.x [DOI: 10.1111/j.1749-6632.2010.05631.x]
  46. Wang CH, Wu SB, Wu YT, Wei YH (2013) Oxidative stress response elicited by mitochondrial dysfunction: implication in the pathophysiology of aging. Exp Biol Med (Maywood, NJ) 238(5):450–460. https://doi.org/10.1177/1535370213493069 [DOI: 10.1177/1535370213493069]
  47. Ashrafi G, Schlehe JS, LaVoie MJ, Schwarz TL (2014) Mitophagy of damaged mitochondria occurs locally in distal neuronal axons and requires PINK1 and Parkin. J Cell Biol 206(5):655–670. https://doi.org/10.1083/jcb.201401070 [DOI: 10.1083/jcb.201401070]
  48. Kubli DA, Gustafsson ÅB (2012) Mitochondria and mitophagy: the yin and yang of cell death control. Circ Res 111(9):1208–1221. https://doi.org/10.1161/CIRCRESAHA.112.265819 [DOI: 10.1161/CIRCRESAHA.112.265819]
  49. Vasconcelos AR, dos Santos NB, Scavone C, Munhoz CD (2019) Nrf2/ARE pathway modulation by dietary energy regulation in neurological disorders. Front Pharmacol 10:33. https://doi.org/10.3389/fphar.2019.00033 [DOI: 10.3389/fphar.2019.00033]
  50. David JA, Rifkin WJ, Rabbani PS, Ceradini DJ (2017) The Nrf2/Keap1/ARE pathway and oxidative stress as a therapeutic target in type II diabetes mellitus. J Diabetes Res 2017:4826724. https://doi.org/10.1155/2017/4826724 [DOI: 10.1155/2017/4826724]
  51. Cuadrado A, Manda G, Hassan A, Alcaraz MJ, Barbas C, Daiber A, Ghezzi P, León R et al (2018) Transcription factor NRF2 as a therapeutic target for chronic diseases: a systems medicine approach. Pharmacol Rev 70(2):348–383. https://doi.org/10.1124/pr.117.014753 [DOI: 10.1124/pr.117.014753]
  52. Gold R, Kappos L, Arnold DL, Bar-Or A, Giovannoni G, Selmaj K, Tornatore C, Sweetser MT et al (2012) Placebo-controlled phase 3 study of oral BG-12 for relapsing multiple sclerosis. N Engl J Med 367(12):1098–1107. https://doi.org/10.1056/NEJMoa1114287 [DOI: 10.1056/NEJMoa1114287]
  53. Fox RJ, Miller DH, Phillips JT, Hutchinson M, Havrdova E, Kita M, Yang M, Raghupathi K et al (2012) Placebo-controlled phase 3 study of oral BG-12 or glatiramer in multiple sclerosis. N Engl J Med 367(12):1087–1097. https://doi.org/10.1056/NEJMoa1206328 [DOI: 10.1056/NEJMoa1206328]
  54. Linker RA, Lee DH, Ryan S, van Dam AM, Conrad R, Bista P, Zeng W, Hronowsky X et al (2011) Fumaric acid esters exert neuroprotective effects in neuroinflammation via activation of the Nrf2 antioxidant pathway. Brain J Neurol 134(Pt 3):678–692. https://doi.org/10.1093/brain/awq386 [DOI: 10.1093/brain/awq386]
  55. da Costa RM, Rodrigues D, Pereira CA, Silva JF, Alves JV, Lobato NS, Tostes RC (2019) Nrf2 as a potential mediator of cardiovascular risk in metabolic diseases. Front Pharmacol 10:382–382. https://doi.org/10.3389/fphar.2019.00382 [DOI: 10.3389/fphar.2019.00382]
  56. Axelsson AS, Tubbs E, Mecham B, Chacko S, Nenonen HA, Tang Y, Fahey JW, Derry JMJ et al (2017) Sulforaphane reduces hepatic glucose production and improves glucose control in patients with type 2 diabetes. Sci Transl Med 9(394):eaah4477. https://doi.org/10.1126/scitranslmed.aah4477 [DOI: 10.1126/scitranslmed.aah4477]
  57. Patel B, Mann GE, Chapple SJ (2018) Concerted redox modulation by sulforaphane alleviates diabetes and cardiometabolic syndrome. Free Radic Biol Med 122:150–160. https://doi.org/10.1016/j.freeradbiomed.2018.02.004 [DOI: 10.1016/j.freeradbiomed.2018.02.004]
  58. Ji L, Liu R, Zhang XD, Chen HL, Bai H, Wang X, Zhao HL, Liang X et al (2010) N-acetylcysteine attenuates phosgene-induced acute lung injury via up-regulation of Nrf2 expression. Inhal Toxicol 22(7):535–542. https://doi.org/10.3109/08958370903525183 [DOI: 10.3109/08958370903525183]
  59. Zhang L, Zhu Z, Liu J, Zhu Z, Hu Z (2014) Protective effect of N-acetylcysteine (NAC) on renal ischemia/reperfusion injury through Nrf2 signaling pathway. J Receptors Signal Transduction 34(5):396–400. https://doi.org/10.3109/10799893.2014.908916 [DOI: 10.3109/10799893.2014.908916]
  60. Wang LL, Huang YH, Yan CY, Wei XD, Hou JQ, Pu JX, Lv JX (2016) N-acetylcysteine ameliorates prostatitis via miR-141 regulating Keap1/Nrf2 signaling. Inflammation 39(2):938–947. https://doi.org/10.1007/s10753-016-0327-1 [DOI: 10.1007/s10753-016-0327-1]
  61. Morris G, Anderson G, Berk M, Maes M (2013) Coenzyme Q10 depletion in medical and neuropsychiatric disorders: potential repercussions and therapeutic implications. Mol Neurobiol 48(3):883–903. https://doi.org/10.1007/s12035-013-8477-8 [DOI: 10.1007/s12035-013-8477-8]
  62. Ooi SL, Green R, Pak SC (2018) N-acetylcysteine for the treatment of psychiatric disorders: a review of current evidence. Biomed Res Int 2018:8. https://doi.org/10.1155/2018/2469486 [DOI: 10.1155/2018/2469486]
  63. Luo C, Yang Q, Liu Y, Zhou S, Jiang J, Reiter RJ, Bhattacharya P, Cui Y et al (2019) The multiple protective roles and molecular mechanisms of melatonin and its precursor N-acetylserotonin in targeting brain injury and liver damage and in maintaining bone health. Free Radic Biol Med 130:215–233. https://doi.org/10.1016/j.freeradbiomed.2018.10.402 [DOI: 10.1016/j.freeradbiomed.2018.10.402]
  64. Kim R, Healey KL, Sepulveda-Orengo MT, Reissner KJ (2018) Astroglial correlates of neuropsychiatric disease: from astrocytopathy to astrogliosis. Prog Neuro-Psychopharmacol Biol Psychiatry 87(Pt A):126–146. https://doi.org/10.1016/j.pnpbp.2017.10.002 [DOI: 10.1016/j.pnpbp.2017.10.002]
  65. Tay TL, Béchade C, D'Andrea I, St-Pierre M-K, Henry MS, Roumier A, Tremblay M-E (2018) Microglia gone rogue: impacts on psychiatric disorders across the lifespan. Front Mol Neurosci 10:421–421. https://doi.org/10.3389/fnmol.2017.00421 [DOI: 10.3389/fnmol.2017.00421]
  66. Radtke FA, Chapman G, Hall J, Syed YA (2017) Modulating neuroinflammation to treat neuropsychiatric disorders. Biomed Res Int 2017:21. https://doi.org/10.1155/2017/5071786 [DOI: 10.1155/2017/5071786]
  67. O'Donovan SM, Sullivan CR, McCullumsmith RE (2017) The role of glutamate transporters in the pathophysiology of neuropsychiatric disorders. NPJ Schizophr 3(1):32–32. https://doi.org/10.1038/s41537-017-0037-1 [DOI: 10.1038/s41537-017-0037-1]
  68. Autry AE, Monteggia LM (2012) Brain-derived neurotrophic factor and neuropsychiatric disorders. Pharmacol Rev 64(2):238–258. https://doi.org/10.1124/pr.111.005108 [DOI: 10.1124/pr.111.005108]
  69. Muneer A, Shamsher Khan RM (2019) Endoplasmic reticulum stress: implications for neuropsychiatric disorders. Chonnam Med J 55(1):8–19. https://doi.org/10.4068/cmj.2019.55.1.8 [DOI: 10.4068/cmj.2019.55.1.8]
  70. Dewachter I, Ris L, Jaworski T, Seymour CM, Kremer A, Borghgraef P, De Vijver H, Godaux E et al (2009) GSK3beta, a centre-staged kinase in neuropsychiatric disorders, modulates long term memory by inhibitory phosphorylation at serine-9. Neurobiol Dis 35(2):193–200. https://doi.org/10.1016/j.nbd.2009.04.003 [DOI: 10.1016/j.nbd.2009.04.003]
  71. Kuehner JN, Bruggeman EC, Wen Z, Yao B (2019) Epigenetic regulations in neuropsychiatric disorders. Front Genet 10:268. https://doi.org/10.3389/fgene.2019.00268 [DOI: 10.3389/fgene.2019.00268]
  72. Jagannath A, Peirson SN, Foster RG (2013) Sleep and circadian rhythm disruption in neuropsychiatric illness. Curr Opin Neurobiol 23(5):888–894. https://doi.org/10.1016/j.conb.2013.03.008 [DOI: 10.1016/j.conb.2013.03.008]
  73. Dey S, Sidor A, O'Rourke B (2016) Compartment-specific control of reactive oxygen species scavenging by antioxidant pathway enzymes. J Biol Chem 291(21):11185–11197. https://doi.org/10.1074/jbc.M116.726968 [DOI: 10.1074/jbc.M116.726968]
  74. Munro D, Treberg JR (2017) A radical shift in perspective: mitochondria as regulators of reactive oxygen species. J Exp Biol 220(7):1170–1180. https://doi.org/10.1242/jeb.132142 [DOI: 10.1242/jeb.132142]
  75. Starkov AA, Andreyev AY, Zhang SF, Starkova NN, Korneeva M, Syromyatnikov M, Popov VN (2014) Scavenging of H2O2 by mouse brain mitochondria. J Bioenerg Biomembr 46(6):471–477. https://doi.org/10.1007/s10863-014-9581-9 [DOI: 10.1007/s10863-014-9581-9]
  76. Ronchi JA, Francisco A, Passos LA, Figueira TR, Castilho RF (2016) The contribution of nicotinamide nucleotide transhydrogenase to peroxide detoxification is dependent on the respiratory state and counterbalanced by other sources of NADPH in liver mitochondria. J Biol Chem 291(38):20173–20187. https://doi.org/10.1074/jbc.M116.730473 [DOI: 10.1074/jbc.M116.730473]
  77. Montano SJ, Lu J, Gustafsson TN, Holmgren A (2014) Activity assays of mammalian thioredoxin and thioredoxin reductase: fluorescent disulfide substrates, mechanisms, and use with tissue samples. Anal Biochem 449:139–146. https://doi.org/10.1016/j.ab.2013.12.025 [DOI: 10.1016/j.ab.2013.12.025]
  78. Cheng Q, Antholine WE, Myers JM, Kalyanaraman B, Arner ES, Myers CR (2010) The selenium-independent inherent pro-oxidant NADPH oxidase activity of mammalian thioredoxin reductase and its selenium-dependent direct peroxidase activities. J Biol Chem 285(28):21708–21723. https://doi.org/10.1074/jbc.M110.117259 [DOI: 10.1074/jbc.M110.117259]
  79. Berkholz DS, Faber HR, Savvides SN, Karplus PA (2008) Catalytic cycle of human glutathione reductase near 1 A resolution. J Mol Biol 382(2):371–384. https://doi.org/10.1016/j.jmb.2008.06.083 [DOI: 10.1016/j.jmb.2008.06.083]
  80. Kamerbeek NM, van Zwieten R, de Boer M, Morren G, Vuil H, Bannink N, Lincke C, Dolman KM et al (2007) Molecular basis of glutathione reductase deficiency in human blood cells. Blood 109(8):3560–3566. https://doi.org/10.1182/blood-2006-08-042531 [DOI: 10.1182/blood-2006-08-042531]
  81. Santos LRB, Muller C, de Souza AH, Takahashi HK, Spegel P, Sweet IR, Chae H, Mulder H et al (2017) NNT reverse mode of operation mediates glucose control of mitochondrial NADPH and glutathione redox state in mouse pancreatic beta-cells. Mol Metab 6(6):535–547. https://doi.org/10.1016/j.molmet.2017.04.004 [DOI: 10.1016/j.molmet.2017.04.004]
  82. Rydstrom J (2006) Mitochondrial NADPH, transhydrogenase and disease. Biochim Biophys Acta 1757(5–6):721–726. https://doi.org/10.1016/j.bbabio.2006.03.010 [DOI: 10.1016/j.bbabio.2006.03.010]
  83. Murphy MP (2015) Redox modulation by reversal of the mitochondrial nicotinamide nucleotide transhydrogenase. Cell Metab 22(3):363–365. https://doi.org/10.1016/j.cmet.2015.08.012 [DOI: 10.1016/j.cmet.2015.08.012]
  84. Ronchi JA, Figueira TR, Ravagnani FG, Oliveira HC, Vercesi AE, Castilho RF (2013) A spontaneous mutation in the nicotinamide nucleotide transhydrogenase gene of C57BL/6J mice results in mitochondrial redox abnormalities. Free Radic Biol Med 63:446–456. https://doi.org/10.1016/j.freeradbiomed.2013.05.049 [DOI: 10.1016/j.freeradbiomed.2013.05.049]
  85. Petrelli R, Felczak K, Cappellacci L (2011) NMN/NaMN adenylyltransferase (NMNAT) and NAD kinase (NADK) inhibitors: chemistry and potential therapeutic applications. Curr Med Chem 18(13):1973–1992 [DOI: 10.2174/092986711795590048]
  86. Love NR, Pollak N, Dölle C, Niere M, Chen Y, Oliveri P, Amaya E, Patel S et al (2015) NAD kinase controls animal NADP biosynthesis and is modulated via evolutionarily divergent calmodulin-dependent mechanisms. Proc Natl Acad Sci 112(5):1386–1391. https://doi.org/10.1073/pnas.1417290112 [DOI: 10.1073/pnas.1417290112]
  87. Shi F, Li Y, Li Y, Wang X (2009) Molecular properties, functions, and potential applications of NAD kinases. Acta Biochim Biophys Sin 41(5):352–361. https://doi.org/10.1093/abbs/gmp029 [DOI: 10.1093/abbs/gmp029]
  88. Pittelli M, Formentini L, Faraco G, Lapucci A, Rapizzi E, Cialdai F, Romano G, Moneti G et al (2010) Inhibition of nicotinamide phosphoribosyltransferase: cellular bioenergetics reveals a mitochondrial insensitive NAD pool. J Biol Chem 285(44):34106–34114. https://doi.org/10.1074/jbc.M110.136739 [DOI: 10.1074/jbc.M110.136739]
  89. Jayaram HN, Kusumanchi P, Yalowitz JA (2011) NMNAT expression and its relation to NAD metabolism. Curr Med Chem 18(13):1962–1972. https://doi.org/10.2174/092986711795590138 [DOI: 10.2174/092986711795590138]
  90. Revollo JR, Grimm AA, Imai S-i (2004) The NAD biosynthesis pathway mediated by nicotinamide phosphoribosyltransferase regulates Sir2 activity in mammalian cells. J Biol Chem 279(49):50754–50763. https://doi.org/10.1074/jbc.M408388200 [DOI: 10.1074/jbc.M408388200]
  91. Canto C, Menzies KJ, Auwerx J (2015) NAD metabolism and the control of energy homeostasis - a balancing act between mitochondria and the nucleus. Cell Metab 22(1):31–53. https://doi.org/10.1016/j.cmet.2015.05.023 [DOI: 10.1016/j.cmet.2015.05.023]
  92. Zeng C, Aleshin AE, Hardie JB, Harrison RW, Fromm HJ (1996) ATP-binding site of human brain hexokinase as studied by molecular modeling and site-directed mutagenesis. Biochemistry 35(40):13157–13164. https://doi.org/10.1021/bi960750e [DOI: 10.1021/bi960750e]
  93. Wilson JE (2003) Isozymes of mammalian hexokinase: structure, subcellular localization and metabolic function. J Exp Biol 206(12):2049–2057. https://doi.org/10.1242/jeb.00241 [DOI: 10.1242/jeb.00241]
  94. Roberts DJ, Miyamoto S (2015) Hexokinase II integrates energy metabolism and cellular protection: Akting on mitochondria and TORCing to autophagy. Cell Death Differ 22(2):248–257. https://doi.org/10.1038/cdd.2014.173 [DOI: 10.1038/cdd.2014.173]
  95. Cruz-Tapias P, Agmon-Levin N, Israeli E, Anaya JM, Shoenfeld Y (2013) Autoimmune (auto-inflammatory) syndrome induced by adjuvants (ASIA)--animal models as a proof of concept. Curr Med Chem 20(32):4030–4036 [DOI: 10.2174/09298673113209990253]
  96. Garcia-Nogales P, Almeida A, Bolanos JP (2003) Peroxynitrite protects neurons against nitric oxide-mediated apoptosis. A key role for glucose-6-phosphate dehydrogenase activity in neuroprotection. J Biol Chem 278(2):864–874. https://doi.org/10.1074/jbc.M206835200 [DOI: 10.1074/jbc.M206835200]
  97. Bayir H, Kagan VE, Clark RS, Janesko-Feldman K, Rafikov R, Huang Z, Zhang X, Vagni V et al (2007) Neuronal NOS-mediated nitration and inactivation of manganese superoxide dismutase in brain after experimental and human brain injury. J Neurochem 101(1):168–181. https://doi.org/10.1111/j.1471-4159.2006.04353.x [DOI: 10.1111/j.1471-4159.2006.04353.x]
  98. Isobe C, Abe T, Terayama Y (2009) Increase in the oxidized/total coenzyme Q-10 ratio in the cerebrospinal fluid of Alzheimer’s disease patients. Dement Geriatr Cogn Disord 28(5):434–439. https://doi.org/10.1159/000256209 [DOI: 10.1159/000256209]
  99. Gomez-Diaz C, Rodriguez-Aguilera JC, Barroso MP, Villalba JM, Navarro F, Crane FL, Navas P (1997) Antioxidant ascorbate is stabilized by NADH-coenzyme Q10 reductase in the plasma membrane. J Bioenerg Biomembr 29(3):251–257 [DOI: 10.1023/A]
  100. Bello RI, Kagan VE, Tyurin V, Navarro F, Alcain FJ, Villalba JM (2003) Regeneration of lipophilic antioxidants by NAD(P)H:quinone oxidoreductase 1. Protoplasma 221(1–2):129–135. https://doi.org/10.1007/s00709-002-0068-x [DOI: 10.1007/s00709-002-0068-x]
  101. Liu Q, Gao Y, Ci X (2019) Role of Nrf2 and its activators in respiratory diseases. Oxidative Med Cell Longev 2019:17. https://doi.org/10.1155/2019/7090534 [DOI: 10.1155/2019/7090534]
  102. Morris G, Berk M, Carvalho AF, Maes M, Walker AJ, Puri BK (2018) Why should neuroscientists worry about iron? The emerging role of ferroptosis in the pathophysiology of neuroprogressive diseases. Behav Brain Res 341:154–175. https://doi.org/10.1016/j.bbr.2017.12.036 [DOI: 10.1016/j.bbr.2017.12.036]
  103. Cebula M, Schmidt EE, Arner ES (2015) TrxR1 as a potent regulator of the Nrf2-Keap1 response system. Antioxid Redox Signal 23(10):823–853. https://doi.org/10.1089/ars.2015.6378 [DOI: 10.1089/ars.2015.6378]
  104. Schmidt EE (2015) Interplay between cytosolic disulfide reductase systems and the Nrf2/Keap1 pathway. Biochem Soc Trans 43(4):632–638. https://doi.org/10.1042/BST20150021 [DOI: 10.1042/BST20150021]
  105. Hansen JM, Watson WH, Jones DP (2004) Compartmentation of Nrf-2 redox control: regulation of cytoplasmic activation by glutathione and DNA binding by thioredoxin-1. Toxicol Sci : an official journal of the Society of Toxicology 82(1):308–317. https://doi.org/10.1093/toxsci/kfh231 [DOI: 10.1093/toxsci/kfh231]
  106. Sueblinvong V, Mills ST, Neujahr DC, Go Y-M, Jones DP, Guidot DM (2016) Nuclear thioredoxin-1 overexpression attenuates alcohol-mediated Nrf2 signaling and lung fibrosis. Alcohol Clin Exp Res 40(9):1846–1856. https://doi.org/10.1111/acer.13148 [DOI: 10.1111/acer.13148]
  107. Steele ML, Fuller S, Patel M, Kersaitis C, Ooi L, Munch G (2013) Effect of Nrf2 activators on release of glutathione, cysteinylglycine and homocysteine by human U373 astroglial cells. Redox Biol 1:441–445. https://doi.org/10.1016/j.redox.2013.08.006 [DOI: 10.1016/j.redox.2013.08.006]
  108. Ishii T, Mann GE (2014) Redox status in mammalian cells and stem cells during culture in vitro: critical roles of Nrf2 and cystine transporter activity in the maintenance of redox balance. Redox Biol 2:786–794. https://doi.org/10.1016/j.redox.2014.04.008 [DOI: 10.1016/j.redox.2014.04.008]
  109. Banning A, Deubel S, Kluth D, Zhou Z, Brigelius-Flohe R (2005) The GI-GPx gene is a target for Nrf2. Mol Cell Biol 25(12):4914–4923. https://doi.org/10.1128/mcb.25.12.4914-4923.2005 [DOI: 10.1128/mcb.25.12.4914-4923.2005]
  110. Jablonska E, Gromadzinska J, Peplonska B, Fendler W, Reszka E, Krol MB, Wieczorek E, Bukowska A et al (2015) Lipid peroxidation and glutathione peroxidase activity relationship in breast cancer depends on functional polymorphism of GPX1. BMC Cancer 15:657. https://doi.org/10.1186/s12885-015-1680-4 [DOI: 10.1186/s12885-015-1680-4]
  111. Bartolini D, Commodi J, Piroddi M, Incipini L, Sancineto L, Santi C, Galli F (2015) Glutathione S-transferase pi expression regulates the Nrf2-dependent response to hormetic diselenides. Free Radic Biol Med 88:466–480. https://doi.org/10.1016/j.freeradbiomed.2015.06.039 [DOI: 10.1016/j.freeradbiomed.2015.06.039]
  112. Harvey CJ, Thimmulappa RK, Singh A, Blake DJ, Ling G, Wakabayashi N, Fujii J, Myers A et al (2009) Nrf2-regulated glutathione recycling independent of biosynthesis is critical for cell survival during oxidative stress. Free Radic Biol Med 46(4):443–453. https://doi.org/10.1016/j.freeradbiomed.2008.10.040 [DOI: 10.1016/j.freeradbiomed.2008.10.040]
  113. Tanito M, Agbaga MP, Anderson RE (2007) Upregulation of thioredoxin system via Nrf2-antioxidant responsive element pathway in adaptive-retinal neuroprotection in vivo and in vitro. Free Radic Biol Med 42(12):1838–1850. https://doi.org/10.1016/j.freeradbiomed.2007.03.018 [DOI: 10.1016/j.freeradbiomed.2007.03.018]
  114. Im J-Y, Lee K-W, Woo J-M, Junn E, Mouradian MM (2012) DJ-1 induces thioredoxin 1 expression through the Nrf2 pathway. Hum Mol Genet 21(13):3013–3024. https://doi.org/10.1093/hmg/dds131 [DOI: 10.1093/hmg/dds131]
  115. Li Q, Wall SB, Ren C, Velten M, Hill CL, Locy ML, Rogers LK, Tipple TE (2016) Thioredoxin reductase inhibition attenuates neonatal hyperoxic lung injury and enhances nuclear factor E2-related factor 2 activation. Am J Respir Cell Mol Biol 55(3):419–428. https://doi.org/10.1165/rcmb.2015-0228OC [DOI: 10.1165/rcmb.2015-0228OC]
  116. Holmström KM, Kostov RV, Dinkova-Kostova AT (2016) The multifaceted role of Nrf2 in mitochondrial function. Curr Opin Toxicol 1:80–91. https://doi.org/10.1016/j.cotox.2016.10.002 [DOI: 10.1016/j.cotox.2016.10.002]
  117. Dinkova-Kostova AT, Abramov AY (2015) The emerging role of Nrf2 in mitochondrial function. Free Radic Biol Med 88(Pt B):179–188. https://doi.org/10.1016/j.freeradbiomed.2015.04.036 [DOI: 10.1016/j.freeradbiomed.2015.04.036]
  118. Ushida Y, Talalay P (2013) Sulforaphane accelerates acetaldehyde metabolism by inducing aldehyde dehydrogenases: relevance to ethanol intolerance. Alcohol Alcohol 48(5):526–534. https://doi.org/10.1093/alcalc/agt063 [DOI: 10.1093/alcalc/agt063]
  119. Heiss EH, Schachner D, Zimmermann K, Dirsch VM (2013) Glucose availability is a decisive factor for Nrf2-mediated gene expression. Redox Biol 1(1):359–365. https://doi.org/10.1016/j.redox.2013.06.001 [DOI: 10.1016/j.redox.2013.06.001]
  120. Roubalová L, Dinkova-Kostova AT, Biedermann D, Křen V, Ulrichová J, Vrba J (2017) Flavonolignan 2,3-dehydrosilydianin activates Nrf2 and upregulates NAD(P)H:quinone oxidoreductase 1 in Hepa1c1c7 cells. Fitoterapia 119:115–120. https://doi.org/10.1016/j.fitote.2017.04.012 [DOI: 10.1016/j.fitote.2017.04.012]
  121. Yamaguchi Y, Hearing VJ, Maeda A, Morita A (2010) NADPH:quinone oxidoreductase-1 as a new regulatory enzyme that increases melanin synthesis. J Investig Dermatol 130(3):645–647. https://doi.org/10.1038/jid.2009.378 [DOI: 10.1038/jid.2009.378]
  122. Dinkova-Kostova AT, Kostov RV, Kazantsev AG (2018) The role of Nrf2 signaling in counteracting neurodegenerative diseases. FEBS J 285(19):3576–3590. https://doi.org/10.1111/febs.14379 [DOI: 10.1111/febs.14379]
  123. Narendra DP, Jin SM, Tanaka A, Suen DF, Gautier CA, Shen J, Cookson MR, Youle RJ (2010) PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol 8(1):e1000298. https://doi.org/10.1371/journal.pbio.1000298 [DOI: 10.1371/journal.pbio.1000298]
  124. Zhang T, Wu P, Budbazar E, Zhu Q, Sun C, Mo J, Peng J, Gospodarev V et al (2019) Mitophagy reduces oxidative stress via Keap1 (Kelch-like epichlorohydrin-associated protein 1)/Nrf2 (nuclear factor-E2-related factor 2)/PHB2 (prohibitin 2) pathway after subarachnoid hemorrhage in rats. Stroke 50(4):978–988. https://doi.org/10.1161/strokeaha.118.021590 [DOI: 10.1161/strokeaha.118.021590]
  125. Palikaras K, Lionaki E, Tavernarakis N (2015) Balancing mitochondrial biogenesis and mitophagy to maintain energy metabolism homeostasis. Cell Death Differ 22(9):1399–1401. https://doi.org/10.1038/cdd.2015.86 [DOI: 10.1038/cdd.2015.86]
  126. Ploumi C, Daskalaki I, Tavernarakis N (2017) Mitochondrial biogenesis and clearance: a balancing act. FEBS J 284(2):183–195. https://doi.org/10.1111/febs.13820 [DOI: 10.1111/febs.13820]
  127. O'Mealey GB, Plafker KS, Berry WL, Janknecht R, Chan JY, Plafker SM (2017) A PGAM5-KEAP1-Nrf2 complex is required for stress-induced mitochondrial retrograde trafficking. J Cell Sci 130(20):3467–3480. https://doi.org/10.1242/jcs.203216 [DOI: 10.1242/jcs.203216]
  128. Pala R, Orhan C, Tuzcu M, Sahin N, Ali S, Cinar V, Atalay M, Sahin K (2016) Coenzyme Q10 supplementation modulates NFkappaB and Nrf2 pathways in exercise training. J Sports Sci Med 15(1):196–203 [PMID: 26957943]
  129. Kabel AM, Elkhoely AA (2017) Ameliorative effect of coenzyme Q10 and/or candesartan on carboplatin-induced nephrotoxicity: roles of apoptosis, transforming growth factor-Β1, nuclear factor kappa-B and the Nrf2/HO-1 pathway. Asian Pac J Cancer Prev 18(6):1629–1636. https://doi.org/10.22034/APJCP.2017.18.6.1629 [DOI: 10.22034/APJCP.2017.18.6.1629]
  130. AO SY, A AF, Abdel Moneim AE, Metwally DM, El-Khadragy MF, Kassab RB (2019) The neuroprotective role of coenzyme Q10 against lead acetate-induced neurotoxicity is mediated by antioxidant, anti-inflammatory and anti-apoptotic activities. Int J Environ Res Public Health 16(16):2895. https://doi.org/10.3390/ijerph16162895 [DOI: 10.3390/ijerph16162895]
  131. Arioz BI, Tastan B, Tarakcioglu E, Tufekci KU, Olcum M, Ersoy N, Bagriyanik A, Genc K et al (2019) Melatonin attenuates LPS-induced acute depressive-like behaviors and microglial NLRP3 inflammasome activation through the SIRT1/Nrf2 pathway. Front Immunol 10:1511. https://doi.org/10.3389/fimmu.2019.01511 [DOI: 10.3389/fimmu.2019.01511]
  132. Guo Y, Sun J, Li T, Zhang Q, Bu S, Wang Q, Lai D (2017) Melatonin ameliorates restraint stress-induced oxidative stress and apoptosis in testicular cells via NF-κB/iNOS and Nrf2/ HO-1 signaling pathway. Sci Rep 7(1):9599. https://doi.org/10.1038/s41598-017-09943-2 [DOI: 10.1038/s41598-017-09943-2]
  133. Chen L-Y, Renn T-Y, Liao W-C, Mai F-D, Ho Y-J, Hsiao G, Lee A-W, Chang H-M (2017) Melatonin successfully rescues hippocampal bioenergetics and improves cognitive function following drug intoxication by promoting Nrf2-ARE signaling activity. J Pineal Res 63(2):e12417. https://doi.org/10.1111/jpi.12417 [DOI: 10.1111/jpi.12417]
  134. Zhang T, Xu S, Wu P, Zhou K, Wu L, Xie Z, Xu W, Luo X et al (2019) Mitoquinone attenuates blood-brain barrier disruption through Nrf2/PHB2/OPA1 pathway after subarachnoid hemorrhage in rats. Exp Neurol 317:1–9. https://doi.org/10.1016/j.expneurol.2019.02.009 [DOI: 10.1016/j.expneurol.2019.02.009]
  135. Zhou J, Wang H, Shen R, Fang J, Yang Y, Dai W, Zhu Y, Zhou M (2018) Mitochondrial-targeted antioxidant MitoQ provides neuroprotection and reduces neuronal apoptosis in experimental traumatic brain injury possibly via the Nrf2-ARE pathway. Am J Transl Res 10(6):1887–1899 [PMID: 30018728]
  136. Turkseven S, Bolognesi M, Brocca A, Angeli P, Pascoli MD (2018) In cirrhotic rats, mitochondria-targeted antioxidant mitoquinone attenuates liver inflammation and fibrosis by modulating oxidative stress and mitophagy. J Hepatol 68:S466–S467. https://doi.org/10.1016/S0168-8278(18)31178-4 [DOI: 10.1016/S0168-8278(18)31178-4]
  137. Li G, Chan YL, Sukjamnong S, Anwer AG, Vindin H, Padula M, Zakarya R, George J et al (2019) A mitochondrial specific antioxidant reverses metabolic dysfunction and fatty liver induced by maternal cigarette smoke in mice. Nutrients 11(7):1669 [DOI: 10.3390/nu11071669]
  138. Kang JW, Hong JM, Lee SM (2016) Melatonin enhances mitophagy and mitochondrial biogenesis in rats with carbon tetrachloride-induced liver fibrosis. J Pineal Res 60(4):383–393. https://doi.org/10.1111/jpi.12319 [DOI: 10.1111/jpi.12319]
  139. Ma S, Chen J, Feng J, Zhang R, Fan M, Han D, Li X, Li C et al (2018) Melatonin ameliorates the progression of atherosclerosis via mitophagy activation and NLRP3 inflammasome inhibition. Oxidative Med Cell Longev 2018:12. https://doi.org/10.1155/2018/9286458 [DOI: 10.1155/2018/9286458]
  140. Wang S, Zhao Z, Feng X, Cheng Z, Xiong Z, Wang T, Lin J, Zhang M et al (2018) Melatonin activates Parkin translocation and rescues the impaired mitophagy activity of diabetic cardiomyopathy through Mst1 inhibition. J Cell Mol Med 22(10):5132–5144. https://doi.org/10.1111/jcmm.13802 [DOI: 10.1111/jcmm.13802]
  141. Van Laar VS, Roy N, Liu A, Rajprohat S, Arnold B, Dukes AA, Holbein CD, Berman SB (2015) Glutamate excitotoxicity in neurons triggers mitochondrial and endoplasmic reticulum accumulation of Parkin, and, in the presence of N-acetyl cysteine, mitophagy. Neurobiol Dis 74:180–193. https://doi.org/10.1016/j.nbd.2014.11.015 [DOI: 10.1016/j.nbd.2014.11.015]
  142. Dludla PV, Dias SC, Obonye N, Johnson R, Louw J, Nkambule BB (2018) A systematic review on the protective effect of N-acetyl cysteine against diabetes-associated cardiovascular complications. Am J Cardiovasc Drugs : Drugs, Devices, and Other Interventions 18(4):283–298. https://doi.org/10.1007/s40256-018-0275-2 [DOI: 10.1007/s40256-018-0275-2]
  143. Peoples JN, Saraf A, Ghazal N, Pham TT, Kwong JQ (2019) Mitochondrial dysfunction and oxidative stress in heart disease. Exp Mol Med 51(12):1–13. https://doi.org/10.1038/s12276-019-0355-7 [DOI: 10.1038/s12276-019-0355-7]
  144. Saddadi F, Alatab S, Pasha F, Ganji MR, Soleimanian T (2014) The effect of treatment with N-acetylcysteine on the serum levels of C-reactive protein and interleukin-6 in patients on hemodialysis. Saudi J Kidney Diseases Transplant : an official publication of the Saudi Center for Organ Transplantation, Saudi Arabia 25(1):66–72. https://doi.org/10.4103/1319-2442.124489 [DOI: 10.4103/1319-2442.124489]
  145. Nizomov A (2015) Effect of N-acetylcysteine indicators of proinflammatory cytokines in patients with acute coronary syndrome with st segment elevation. Atherosclerosis 241(1):e87. https://doi.org/10.1016/j.atherosclerosis.2015.04.305 [DOI: 10.1016/j.atherosclerosis.2015.04.305]
  146. Nascimento MM, Suliman ME, Silva M, Chinaglia T, Marchioro J, Hayashi SY, Riella MC, Lindholm B et al (2010) Effect of oral N-acetylcysteine treatment on plasma inflammatory and oxidative stress markers in peritoneal dialysis patients: a placebo-controlled study. Perit Dial Int 30(3):336–342. https://doi.org/10.3747/pdi.2009.00073 [DOI: 10.3747/pdi.2009.00073]
  147. Klauser P, Xin L, Fournier M, Griffa A, Cleusix M, Jenni R, Cuenod M, Gruetter R et al (2018) N-acetylcysteine add-on treatment leads to an improvement of fornix white matter integrity in early psychosis: a double-blind randomized placebo-controlled trial. Transl Psychiatry 8(1):220. https://doi.org/10.1038/s41398-018-0266-8 [DOI: 10.1038/s41398-018-0266-8]
  148. Mullier E, Roine T, Griffa A, Xin L, Baumann PS, Klauser P, Cleusix M, Jenni R et al (2019) N-acetyl-cysteine supplementation improves functional connectivity within the cingulate cortex in early psychosis: a pilot study. Int J Neuropsychopharmacol 22(8):478–487. https://doi.org/10.1093/ijnp/pyz022 [DOI: 10.1093/ijnp/pyz022]
  149. Berk M, Dean O, Cotton SM, Gama CS, Kapczinski F, Fernandes BS, Kohlmann K, Jeavons S et al (2011) The efficacy of N-acetylcysteine as an adjunctive treatment in bipolar depression: an open label trial. J Affect Disord 135(1–3):389–394. https://doi.org/10.1016/j.jad.2011.06.005 [DOI: 10.1016/j.jad.2011.06.005]
  150. Berk M, Dean OM, Cotton SM, Gama CS, Kapczinski F, Fernandes B, Kohlmann K, Jeavons S et al (2012) Maintenance N-acetyl cysteine treatment for bipolar disorder: a double-blind randomized placebo controlled trial. BMC Med 10:91. https://doi.org/10.1186/1741-7015-10-91 [DOI: 10.1186/1741-7015-10-91]
  151. Fernandes BS, Dean OM, Dodd S, Malhi GS, Berk M (2016) N-acetylcysteine in depressive symptoms and functionality: a systematic review and meta-analysis. J Clin Psychiatry 77(4):e457–e466. https://doi.org/10.4088/JCP.15r09984 [DOI: 10.4088/JCP.15r09984]
  152. Firth J, Teasdale SB, Allott K, Siskind D, Marx W, Cotter J, Veronese N, Schuch F et al (2019) The efficacy and safety of nutrient supplements in the treatment of mental disorders: a meta-review of meta-analyses of randomized controlled trials. World Psychiatry 18(3):308–324. https://doi.org/10.1002/wps.20672 [DOI: 10.1002/wps.20672]
  153. Wright DJ, Renoir T, Smith ZM, Frazier AE, Francis PS, Thorburn DR, McGee SL, Hannan AJ et al (2015) N-acetylcysteine improves mitochondrial function and ameliorates behavioral deficits in the R6/1 mouse model of Huntington’s disease. Transl Psychiatry 5(1):e492. https://doi.org/10.1038/tp.2014.131 [DOI: 10.1038/tp.2014.131]
  154. Tardiolo G, Bramanti P, Mazzon E (2018) Overview on the effects of N-acetylcysteine in neurodegenerative diseases. Molecules (Basel, Switzerland) 23(12):3305. https://doi.org/10.3390/molecules23123305 [DOI: 10.3390/molecules23123305]
  155. Aldbass AM, Bhat RS, El-Ansary A (2013) Protective and therapeutic potency of N-acetyl-cysteine on propionic acid-induced biochemical autistic features in rats. J Neuroinflammation 10(1):837. https://doi.org/10.1186/1742-2094-10-42 [DOI: 10.1186/1742-2094-10-42]
  156. Saleh AAS (2015) Anti-neuroinflammatory and antioxidant effects of N-acetyl cysteine in long-term consumption of artificial sweetener aspartame in the rat cerebral cortex. J Basic Appl Zool 72:73–80. https://doi.org/10.1016/j.jobaz.2015.05.001 [DOI: 10.1016/j.jobaz.2015.05.001]
  157. Schneider R, Bandiera S, Souza DG, Bellaver B, Caletti G, Quincozes-Santos A, Elisabetsky E, Gomez R (2017) N-acetylcysteine prevents alcohol related neuroinflammation in rats. Neurochem Res 42(8):2135–2141. https://doi.org/10.1007/s11064-017-2218-8 [DOI: 10.1007/s11064-017-2218-8]
  158. Sun Y, Pu LY, Lu L, Wang XH, Zhang F, Rao JH (2014) N-acetylcysteine attenuates reactive-oxygen-species-mediated endoplasmic reticulum stress during liver ischemia-reperfusion injury. World J Gastroenterol 20(41):15289–15298. https://doi.org/10.3748/wjg.v20.i41.15289 [DOI: 10.3748/wjg.v20.i41.15289]
  159. Guo MY, Wang H, Chen YH, Xia MZ, Zhang C, Xu DX (2018) N-acetylcysteine alleviates cadmium-induced placental endoplasmic reticulum stress and fetal growth restriction in mice. PLoS One 13(1):e0191667. https://doi.org/10.1371/journal.pone.0191667 [DOI: 10.1371/journal.pone.0191667]
  160. Zhao S, Liu Y, Wang F, Xu D, Xie P (2018) N-acetylcysteine protects against microcystin-LR-induced endoplasmic reticulum stress and germ cell apoptosis in zebrafish testes. Chemosphere 204:463–473. https://doi.org/10.1016/j.chemosphere.2018.04.020 [DOI: 10.1016/j.chemosphere.2018.04.020]
  161. Singh F, Charles A-L, Schlagowski A-I, Bouitbir J, Bonifacio A, Piquard F, Krähenbühl S, Geny B et al (2015) Reductive stress impairs myoblasts mitochondrial function and triggers mitochondrial hormesis. Biochimica et Biophysica Acta (BBA) - Mol Cell Res 1853(7):1574–1585. https://doi.org/10.1016/j.bbamcr.2015.03.006 [DOI: 10.1016/j.bbamcr.2015.03.006]
  162. Majano PL, Medina J, Zubia I, Sunyer L, Lara-Pezzi E, Maldonado-Rodriguez A, Lopez-Cabrera M, Moreno-Otero R (2004) N-acetyl-cysteine modulates inducible nitric oxide synthase gene expression in human hepatocytes. J Hepatol 40(4):632–637. https://doi.org/10.1016/j.jhep.2003.12.009 [DOI: 10.1016/j.jhep.2003.12.009]
  163. Whitehead NP, Pham C, Gervasio OL, Allen DG (2008) N-acetylcysteine ameliorates skeletal muscle pathophysiology in mdx mice. J Physiol 586(7):2003–2014. https://doi.org/10.1113/jphysiol.2007.148338 [DOI: 10.1113/jphysiol.2007.148338]
  164. Garcia-Roman R, Salazar-Gonzalez D, Rosas S, Arellanes-Robledo J, Beltran-Ramirez O, Fattel-Fazenda S, Villa-Trevino S (2008) The differential NF-kB modulation by S-adenosyl-L-methionine, N-acetylcysteine and quercetin on the promotion stage of chemical hepatocarcinogenesis. Free Radic Res 42(4):331–343. https://doi.org/10.1080/10715760802005169 [DOI: 10.1080/10715760802005169]
  165. McQueen G, Lally J, Collier T, Zelaya F, Lythgoe DJ, Barker GJ, Stone JM, McGuire P et al (2018) Effects of N-acetylcysteine on brain glutamate levels and resting perfusion in schizophrenia. Psychopharmacology 235(10):3045–3054. https://doi.org/10.1007/s00213-018-4997-2 [DOI: 10.1007/s00213-018-4997-2]
  166. Das P, Tanious M, Fritz K, Dodd S, Dean OM, Berk M, Malhi GS (2013) Metabolite profiles in the anterior cingulate cortex of depressed patients differentiate those taking N-acetyl-cysteine versus placebo. Austr N Z J Psychiatry 47(4):347–354. https://doi.org/10.1177/0004867412474074 [DOI: 10.1177/0004867412474074]
  167. Schmaal L, Veltman DJ, Nederveen A, van den Brink W, Goudriaan AE (2012) N-acetylcysteine normalizes glutamate levels in cocaine-dependent patients: a randomized crossover magnetic resonance spectroscopy study. Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology 37(9):2143–2152. https://doi.org/10.1038/npp.2012.66 [DOI: 10.1038/npp.2012.66]
  168. Durieux AMS, Fernandes C, Murphy D, Labouesse MA, Giovanoli S, Meyer U, Li Q, So P-W et al (2015) Targeting glia with N-acetylcysteine modulates brain glutamate and behaviors relevant to neurodevelopmental disorders in C57BL/6J mice. Front Behav Neurosci 9:343. https://doi.org/10.3389/fnbeh.2015.00343 [DOI: 10.3389/fnbeh.2015.00343]
  169. Reissner KJ, Gipson CD, Tran PK, Knackstedt LA, Scofield MD, Kalivas PW (2015) Glutamate transporter GLT-1 mediates N-acetylcysteine inhibition of cocaine reinstatement. Addict Biol 20(2):316–323. https://doi.org/10.1111/adb.12127 [DOI: 10.1111/adb.12127]
  170. Moriguchi S, Takamiya A, Noda Y, Horita N, Wada M, Tsugawa S, Plitman E, Sano Y et al (2019) Glutamatergic neurometabolite levels in major depressive disorder: a systematic review and meta-analysis of proton magnetic resonance spectroscopy studies. Mol Psychiatry 24(7):952–964. https://doi.org/10.1038/s41380-018-0252-9 [DOI: 10.1038/s41380-018-0252-9]
  171. Luykx JJ, Laban KG, van den Heuvel MP, Boks MP, Mandl RC, Kahn RS, Bakker SC (2012) Region and state specific glutamate downregulation in major depressive disorder: a meta-analysis of (1)H-MRS findings. Neurosci Biobehav Rev 36(1):198–205. https://doi.org/10.1016/j.neubiorev.2011.05.014 [DOI: 10.1016/j.neubiorev.2011.05.014]
  172. Soeiro-de-Souza MG, Henning A, Machado-Vieira R, Moreno RA, Pastorello BF, da Costa Leite C, Vallada H, Otaduy MC (2015) Anterior cingulate glutamate-glutamine cycle metabolites are altered in euthymic bipolar I disorder. Eur Neuropsychopharmacol : the journal of the European College of Neuropsychopharmacology 25(12):2221–2229. https://doi.org/10.1016/j.euroneuro.2015.09.020 [DOI: 10.1016/j.euroneuro.2015.09.020]
  173. Merritt K, Egerton A, Kempton MJ, Taylor MJ, McGuire PK (2016) Nature of glutamate alterations in schizophrenia: a meta-analysis of proton magnetic resonance spectroscopy studies. JAMA Psychiatry 73(7):665–674. https://doi.org/10.1001/jamapsychiatry.2016.0442 [DOI: 10.1001/jamapsychiatry.2016.0442]
  174. Merritt K, Perez-Iglesias R, Sendt KV, Goozee R, Jauhar S, Pepper F, Barker GJ, Glenthoj B et al (2019) Remission from antipsychotic treatment in first episode psychosis related to longitudinal changes in brain glutamate. NPJ Schizophr 5(1):12. https://doi.org/10.1038/s41537-019-0080-1 [DOI: 10.1038/s41537-019-0080-1]
  175. Millea PJ (2009) N-acetylcysteine: multiple clinical applications. Am Fam Physician 80(3):265–269 [PMID: 19621836]
  176. Lewerenz J, Hewett SJ, Huang Y, Lambros M, Gout PW, Kalivas PW, Massie A, Smolders I et al (2013) The cystine/glutamate antiporter system x(c)(-) in health and disease: from molecular mechanisms to novel therapeutic opportunities. Antioxid Redox Signal 18(5):522–555. https://doi.org/10.1089/ars.2011.4391 [DOI: 10.1089/ars.2011.4391]
  177. Dukoff DJ, Hogg DW, Hawrysh PJ, Buck LT (2014) Scavenging ROS dramatically increase NMDA receptor whole-cell currents in painted turtle cortical neurons. J Exp Biol 217(Pt 18):3346–3355. https://doi.org/10.1242/jeb.105825 [DOI: 10.1242/jeb.105825]
  178. Haxaire C, Turpin FR, Potier B, Kervern M, Sinet PM, Barbanel G, Mothet JP, Dutar P et al (2012) Reversal of age-related oxidative stress prevents hippocampal synaptic plasticity deficits by protecting D-serine-dependent NMDA receptor activation. Aging Cell 11(2):336–344. https://doi.org/10.1111/j.1474-9726.2012.00792.x [DOI: 10.1111/j.1474-9726.2012.00792.x]
  179. Wright DJ, Gray LJ, Finkelstein DI, Crouch PJ, Pow D, Pang TY, Li S, Smith ZM et al (2016) N-acetylcysteine modulates glutamatergic dysfunction and depressive behavior in Huntington’s disease. Hum Mol Genet 25(14):2923–2933. https://doi.org/10.1093/hmg/ddw144 [DOI: 10.1093/hmg/ddw144]
  180. Monti DA, Zabrecky G, Kremens D, Liang T-W, Wintering NA, Bazzan AJ, Zhong L, Bowens BK et al (2019) N-acetyl cysteine is associated with dopaminergic improvement in Parkinson’s disease. Clin Pharmacol Ther 106(4):884–890. https://doi.org/10.1002/cpt.1548 [DOI: 10.1002/cpt.1548]
  181. Monti DA, Zabrecky G, Kremens D, Liang TW, Wintering NA, Cai J, Wei X, Bazzan AJ et al (2016) N-acetyl cysteine may support dopamine neurons in Parkinson’s disease: preliminary clinical and cell line data. PLoS One 11(6):e0157602. https://doi.org/10.1371/journal.pone.0157602 [DOI: 10.1371/journal.pone.0157602]
  182. Ezerina D, Takano Y, Hanaoka K, Urano Y, Dick TP (2018) N-acetyl cysteine functions as a fast-acting antioxidant by triggering intracellular H2S and sulfane sulfur production. Cell Chem Biol 25(4):447–459.e444. https://doi.org/10.1016/j.chembiol.2018.01.011 [DOI: 10.1016/j.chembiol.2018.01.011]
  183. Aldini G, Altomare A, Baron G, Vistoli G, Carini M, Borsani L, Sergio F (2018) N-acetylcysteine as an antioxidant and disulphide breaking agent: the reasons why. Free Radic Res 52(7):751–762. https://doi.org/10.1080/10715762.2018.1468564 [DOI: 10.1080/10715762.2018.1468564]
  184. Holmay MJ, Terpstra M, Coles LD, Mishra U, Ahlskog M, Öz G, Cloyd JC, Tuite PJ (2013) N-acetylcysteine boosts brain and blood glutathione in Gaucher and Parkinson diseases. Clin Neuropharmacol 36(4):103–106. https://doi.org/10.1097/WNF.0b013e31829ae713 [DOI: 10.1097/WNF.0b013e31829ae713]
  185. Coles LD, Tuite PJ, Oz G, Mishra UR, Kartha RV, Sullivan KM, Cloyd JC, Terpstra M (2018) Repeated-dose oral N-acetylcysteine in Parkinson's disease: pharmacokinetics and effect on brain glutathione and oxidative stress. J Clin Pharmacol 58(2):158–167. https://doi.org/10.1002/jcph.1008 [DOI: 10.1002/jcph.1008]
  186. Reyes RC, Cittolin-Santos GF, Kim J-E, Won SJ, Brennan-Minnella AM, Katz M, Glass GA, Swanson RA (2016) Neuronal glutathione content and antioxidant capacity can be normalized in situ by N-acetyl cysteine concentrations attained in human cerebrospinal fluid. Neurotherapeutics 13(1):217–225. https://doi.org/10.1007/s13311-015-0404-4 [DOI: 10.1007/s13311-015-0404-4]
  187. Moss HG, Brown TR, Wiest DB, Jenkins DD (2018) N-acetylcysteine rapidly replenishes central nervous system glutathione measured via magnetic resonance spectroscopy in human neonates with hypoxic-ischemic encephalopathy. J Cereb Blood Flow Metab : official journal of the International Society of Cerebral Blood Flow and Metabolism 38(6):950–958. https://doi.org/10.1177/0271678x18765828 [DOI: 10.1177/0271678x18765828]
  188. Lavoie S, Murray MM, Deppen P, Knyazeva MG, Berk M, Boulat O, Bovet P, Bush AI et al (2008) Glutathione precursor, N-acetyl-cysteine, improves mismatch negativity in schizophrenia patients. Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology 33(9):2187–2199. https://doi.org/10.1038/sj.npp.1301624 [DOI: 10.1038/sj.npp.1301624]
  189. Atalay F, Odabasoglu F, Halici M, Cadirci E, Aydin O, Halici Z, Cakir A (2016) N-acetyl cysteine has both gastro-protective and anti-inflammatory effects in experimental rat models: its gastro-protective effect is related to its in vivo and in vitro antioxidant properties. J Cell Biochem 117(2):308–319. https://doi.org/10.1002/jcb.25193 [DOI: 10.1002/jcb.25193]
  190. Zhou J, Coles LD, Kartha RV, Nash N, Mishra U, Lund TC, Cloyd JC (2015) Intravenous administration of stable-labeled N-acetylcysteine demonstrates an indirect mechanism for boosting glutathione and improving redox status. J Pharm Sci 104(8):2619–2626. https://doi.org/10.1002/jps.24482 [DOI: 10.1002/jps.24482]
  191. Zhang F, Lau SS, Monks TJ (2010) The cytoprotective effect of N-acetyl-L-cysteine against ROS-induced cytotoxicity is independent of its ability to enhance glutathione synthesis. Toxicol Sci 120(1):87–97. https://doi.org/10.1093/toxsci/kfq364 [DOI: 10.1093/toxsci/kfq364]
  192. Samuni Y, Goldstein S, Dean OM, Berk M (2013) The chemistry and biological activities of N-acetylcysteine. Biochim Biophys Acta Gen Subj 1830(8):4117–4129. https://doi.org/10.1016/j.bbagen.2013.04.016 [DOI: 10.1016/j.bbagen.2013.04.016]
  193. Zuhra K, Tome CS, Masi L, Giardina G, Paulini G, Malagrino F, Forte E, Vicente JB et al (2019) N-acetylcysteine serves as substrate of 3-mercaptopyruvate sulfurtransferase and stimulates sulfide metabolism in colon cancer cells. Cells 8(8):828. https://doi.org/10.3390/cells8080828 [DOI: 10.3390/cells8080828]
  194. Filipovic MR, Zivanovic J, Alvarez B, Banerjee R (2018) Chemical biology of H(2)S signaling through persulfidation. Chem Rev 118(3):1253–1337. https://doi.org/10.1021/acs.chemrev.7b00205 [DOI: 10.1021/acs.chemrev.7b00205]
  195. Calvert JW, Jha S, Gundewar S, Elrod JW, Ramachandran A, Pattillo CB, Kevil CG, Lefer DJ (2009) Hydrogen sulfide mediates cardioprotection through Nrf2 signaling. Circ Res 105(4):365–374. https://doi.org/10.1161/CIRCRESAHA.109.199919 [DOI: 10.1161/CIRCRESAHA.109.199919]
  196. Yang G, Zhao K, Ju Y, Mani S, Cao Q, Puukila S, Khaper N, Wu L et al (2013) Hydrogen sulfide protects against cellular senescence via S-sulfhydration of Keap1 and activation of Nrf2. Antioxid Redox Signal 18(15):1906–1919. https://doi.org/10.1089/ars.2012.4645 [DOI: 10.1089/ars.2012.4645]
  197. Hourihan JM, Kenna JG, Hayes JD (2013) The gasotransmitter hydrogen sulfide induces nrf2-target genes by inactivating the keap1 ubiquitin ligase substrate adaptor through formation of a disulfide bond between cys-226 and cys-613. Antioxid Redox Signal 19(5):465–481. https://doi.org/10.1089/ars.2012.4944 [DOI: 10.1089/ars.2012.4944]
  198. Sen N, Paul BD, Gadalla MM, Mustafa AK, Sen T, Xu R, Kim S, Snyder SH (2012) Hydrogen sulfide-linked sulfhydration of NF-kappaB mediates its antiapoptotic actions. Mol Cell 45(1):13–24. https://doi.org/10.1016/j.molcel.2011.10.021 [DOI: 10.1016/j.molcel.2011.10.021]
  199. Untereiner AA, Fu M, Modis K, Wang R, Ju Y, Wu L (2016) Stimulatory effect of CSE-generated H2S on hepatic mitochondrial biogenesis and the underlying mechanisms. Nitric Oxide Biol Chem 58:67–76. https://doi.org/10.1016/j.niox.2016.06.005 [DOI: 10.1016/j.niox.2016.06.005]
  200. Sen N (2017) Functional and molecular insights of hydrogen sulfide signaling and protein sulfhydration. J Mol Biol 429(4):543–561. https://doi.org/10.1016/j.jmb.2016.12.015 [DOI: 10.1016/j.jmb.2016.12.015]
  201. Shimizu Y, Polavarapu R, Eskla KL, Nicholson CK, Koczor CA, Wang R, Lewis W, Shiva S et al (2018) Hydrogen sulfide regulates cardiac mitochondrial biogenesis via the activation of AMPK. J Mol Cell Cardiol 116:29–40. https://doi.org/10.1016/j.yjmcc.2018.01.011 [DOI: 10.1016/j.yjmcc.2018.01.011]
  202. Dludla PV, Nyambuya TM, Orlando P, Silvestri S, Mxinwa V, Mokgalaboni K, Nkambule BB, Louw J et al (2020) The impact of coenzyme Q(10) on metabolic and cardiovascular disease profiles in diabetic patients: a systematic review and meta-analysis of randomized controlled trials. Endocrinol Diabetes Metab 3(2):e00118. https://doi.org/10.1002/edm2.118 [DOI: 10.1002/edm2.118]
  203. Sangsefidi ZS, Yaghoubi F, Hajiahmadi S, Hosseinzadeh M (2020) The effect of coenzyme Q10 supplementation on oxidative stress: a systematic review and meta-analysis of randomized controlled clinical trials. Food Sci Nutr 8(4):1766–1776. https://doi.org/10.1002/fsn3.1492 [DOI: 10.1002/fsn3.1492]
  204. Forester BP, Harper DG, Georgakas J, Ravichandran C, Madurai N, Cohen BM (2015) Antidepressant effects of open label treatment with coenzyme Q10 in geriatric bipolar depression. J Clin Psychopharmacol 35(3):338–340. https://doi.org/10.1097/JCP.0000000000000326 [DOI: 10.1097/JCP.0000000000000326]
  205. Mehrpooya M, Yasrebifar F, Haghighi M, Mohammadi Y, Jahangard L (2018) Evaluating the effect of coenzyme Q10 augmentation on treatment of bipolar depression: a double-blind controlled clinical trial. J Clin Psychopharmacol 38(5):460–466. https://doi.org/10.1097/jcp.0000000000000938 [DOI: 10.1097/jcp.0000000000000938]
  206. Maguire Á, Hargreaves A, Gill M (2018) S83. The impact of coenzyme Q10 on the cognitive deficits and symptoms of schizophrenia: protocol and baseline data of a randomised, placebo-controlled study. Schizophr Bull 44(Suppl 1):S357. https://doi.org/10.1093/schbul/sby018.870 [DOI: 10.1093/schbul/sby018.870]
  207. Ostman B, Sjodin A, Michaelsson K, Byberg L (2012) Coenzyme Q10 supplementation and exercise-induced oxidative stress in humans. Nutrition (Burbank, Los Angeles County, Calif) 28(4):403–417. https://doi.org/10.1016/j.nut.2011.07.010 [DOI: 10.1016/j.nut.2011.07.010]
  208. Nagase M, Yamamoto Y, Matsumoto N, Arai Y, Hirose N (2018) Increased oxidative stress and coenzyme Q10 deficiency in centenarians. J Clin Biochem Nutr 63(2):129–136. https://doi.org/10.3164/jcbn.17-124 [DOI: 10.3164/jcbn.17-124]
  209. Kontush A, Reich A, Baum K, Spranger T, Finckh B, Kohlschutter A, Beisiegel U (1997) Plasma ubiquinol-10 is decreased in patients with hyperlipidaemia. Atherosclerosis 129(1):119–126. https://doi.org/10.1016/s0021-9150(96)06021-2 [DOI: 10.1016/s0021-9150(96)06021-2]
  210. Maes M, Mihaylova I, Kubera M, Uytterhoeven M, Vrydags N, Bosmans E (2009) Lower plasma coenzyme Q10 in depression: a marker for treatment resistance and chronic fatigue in depression and a risk factor to cardiovascular disorder in that illness. Neuro Endocrinol Lett 30(4):462–469 [PMID: 20010493]
  211. McGarry A, McDermott M, Kieburtz K, de Blieck EA, Beal F, Marder K, Ross C, Shoulson I et al (2017) A randomized, double-blind, placebo-controlled trial of coenzyme Q10 in Huntington disease. Neurology 88(2):152–159. https://doi.org/10.1212/WNL.0000000000003478 [DOI: 10.1212/WNL.0000000000003478]
  212. Hernández-Camacho JD, Bernier M, López-Lluch G, Navas P (2018) Coenzyme Q(10) supplementation in aging and disease. Front Physiol 9:44–44. https://doi.org/10.3389/fphys.2018.00044 [DOI: 10.3389/fphys.2018.00044]
  213. Lapuente-Brun E, Moreno-Loshuertos R, Acín-Pérez R, Latorre-Pellicer A, Colás C, Balsa E, Perales-Clemente E, Quirós PM et al (2013) Supercomplex assembly determines electron flux in the mitochondrial electron transport chain. Science 340(6140):1567–1570. https://doi.org/10.1126/science.1230381 [DOI: 10.1126/science.1230381]
  214. Genova ML, Lenaz G (2011) New developments on the functions of coenzyme Q in mitochondria. BioFactors (Oxford, England) 37(5):330–354. https://doi.org/10.1002/biof.168 [DOI: 10.1002/biof.168]
  215. Yamamura T, Otani H, Nakao Y, Hattori R, Osako M, Imamura H, Das DK (2001) Dual involvement of coenzyme Q10 in redox signaling and inhibition of death signaling in the rat heart mitochondria. Antioxid Redox Signal 3(1):103–112. https://doi.org/10.1089/152308601750100588 [DOI: 10.1089/152308601750100588]
  216. Noh YH, Kim KY, Shim MS, Choi SH, Choi S, Ellisman MH, Weinreb RN, Perkins GA et al (2013) Inhibition of oxidative stress by coenzyme Q10 increases mitochondrial mass and improves bioenergetic function in optic nerve head astrocytes. Cell Death Dis 4:e820. https://doi.org/10.1038/cddis.2013.341 [DOI: 10.1038/cddis.2013.341]
  217. Jing L, He MT, Chang Y, Mehta SL, He QP, Zhang JZ, Li PA (2015) Coenzyme Q10 protects astrocytes from ROS-induced damage through inhibition of mitochondria-mediated cell death pathway. Int J Biol Sci 11(1):59–66. https://doi.org/10.7150/ijbs.10174 [DOI: 10.7150/ijbs.10174]
  218. Duberley KE, Heales SJR, Abramov AY, Chalasani A, Land JM, Rahman S, Hargreaves IP (2014) Effect of coenzyme Q10 supplementation on mitochondrial electron transport chain activity and mitochondrial oxidative stress in coenzyme Q10 deficient human neuronal cells. Int J Biochem Cell Biol 50:60–63. https://doi.org/10.1016/j.biocel.2014.02.003 [DOI: 10.1016/j.biocel.2014.02.003]
  219. Singh A, Kumar A (2015) Microglial inhibitory mechanism of coenzyme Q10 against Abeta (1-42) induced cognitive dysfunctions: possible behavioral, biochemical, cellular, and histopathological alterations. Front Pharmacol 6:268. https://doi.org/10.3389/fphar.2015.00268 [DOI: 10.3389/fphar.2015.00268]
  220. Alcázar-Fabra M, Navas P, Brea-Calvo G (2016) Coenzyme Q biosynthesis and its role in the respiratory chain structure. Biochimica et Biophysica Acta (BBA) - Bioenergetics 1857(8):1073–1078. https://doi.org/10.1016/j.bbabio.2016.03.010 [DOI: 10.1016/j.bbabio.2016.03.010]
  221. Robb EL, Hall AR, Prime TA, Eaton S, Szibor M, Viscomi C, James AM, Murphy MP (2018) Control of mitochondrial superoxide production by reverse electron transport at complex I. J Biol Chem 293(25):9869–9879. https://doi.org/10.1074/jbc.RA118.003647 [DOI: 10.1074/jbc.RA118.003647]
  222. Scialò F, Sriram A, Fernández-Ayala D, Gubina N, Lõhmus M, Nelson G, Logan A, Cooper HM et al (2016) Mitochondrial ROS produced via reverse electron transport extend animal lifespan. Cell Metab 23(4):725–734. https://doi.org/10.1016/j.cmet.2016.03.009 [DOI: 10.1016/j.cmet.2016.03.009]
  223. Scialò F, Fernández-Ayala DJ, Sanz A (2017) Role of mitochondrial reverse electron transport in ROS signaling: potential roles in health and disease. Front Physiol 8:428–428. https://doi.org/10.3389/fphys.2017.00428 [DOI: 10.3389/fphys.2017.00428]
  224. Varela-López A, Giampieri F, Battino M, Quiles J (2016) Coenzyme Q and its role in the dietary therapy against aging. Molecules 21(3):373. https://doi.org/10.3390/molecules21030373 [DOI: 10.3390/molecules21030373]
  225. Thanh TB, Thanh HN, Thi Minh HP, Vu Duc L (2016) Protective effect of coenzyme Q10 on methamphetamine-induced neurotoxicity in the mouse brain. Trends Med Res 11(1):1–10. https://doi.org/10.3923/tmr.2016.1.10 [DOI: 10.3923/tmr.2016.1.10]
  226. Anderson EJ, Katunga LA, Willis MS (2012) Mitochondria as a source and target of lipid peroxidation products in healthy and diseased heart. Clin Exp Pharmacol Physiol 39(2):179–193. https://doi.org/10.1111/j.1440-1681.2011.05641.x [DOI: 10.1111/j.1440-1681.2011.05641.x]
  227. Lokhmatikov AV, Voskoboynikova N, Cherepanov DA, Skulachev MV, Steinhoff H-J, Skulachev VP, Mulkidjanian AY (2016) Impact of antioxidants on cardiolipin oxidation in liposomes: why mitochondrial cardiolipin serves as an apoptotic signal? Oxidative Med Cell Longev 2016:19. https://doi.org/10.1155/2016/8679469 [DOI: 10.1155/2016/8679469]
  228. Littarru GP, Tiano L (2007) Bioenergetic and antioxidant properties of coenzyme Q10: recent developments. Mol Biotechnol 37(1):31–37 [DOI: 10.1007/s12033-007-0052-y]
  229. Paradies G, Petrosillo G, Paradies V, Ruggiero FM (2009) Role of cardiolipin peroxidation and Ca2+ in mitochondrial dysfunction and disease. Cell Calcium 45(6):643–650. https://doi.org/10.1016/j.ceca.2009.03.012 [DOI: 10.1016/j.ceca.2009.03.012]
  230. Musatov A, Robinson NC (2012) Susceptibility of mitochondrial electron-transport complexes to oxidative damage. Focus on cytochrome c oxidase. Free Radic Res 46(11):1313–1326. https://doi.org/10.3109/10715762.2012.717273 [DOI: 10.3109/10715762.2012.717273]
  231. Paradies G, Paradies V, De Benedictis V, Ruggiero FM, Petrosillo G (2014) Functional role of cardiolipin in mitochondrial bioenergetics. Biochimica et Biophysica Acta (BBA) - Bioenergetics 1837(4):408–417. https://doi.org/10.1016/j.bbabio.2013.10.006 [DOI: 10.1016/j.bbabio.2013.10.006]
  232. Vähäheikkilä M, Peltomaa T, Róg T, Vazdar M, Pöyry S, Vattulainen I (2018) How cardiolipin peroxidation alters the properties of the inner mitochondrial membrane? Chem Phys Lipids 214:15–23. https://doi.org/10.1016/j.chemphyslip.2018.04.005 [DOI: 10.1016/j.chemphyslip.2018.04.005]
  233. Echtay KS, Winkler E, Klingenberg M (2000) Coenzyme Q is an obligatory cofactor for uncoupling protein function. Nature 408(6812):609–613. https://doi.org/10.1038/35046114 [DOI: 10.1038/35046114]
  234. Echtay KS, Winkler E, Frischmuth K, Klingenberg M (2001) Uncoupling proteins 2 and 3 are highly active H transporters and highly nucleotide sensitive when activated by coenzyme Q (ubiquinone). Proc Natl Acad Sci U S A 98(4):1416–1421. https://doi.org/10.1073/pnas.98.4.1416 [DOI: 10.1073/pnas.98.4.1416]
  235. Turunen M, Olsson J, Dallner G (2004) Metabolism and function of coenzyme Q. Biochim Biophys Acta Biomembr 1660(1):171–199. https://doi.org/10.1016/j.bbamem.2003.11.012 [DOI: 10.1016/j.bbamem.2003.11.012]
  236. Jezek P, Holendova B, Garlid KD, Jaburek M (2018) Mitochondrial uncoupling proteins: subtle regulators of cellular redox signaling. Antioxid Redox Signal 29(7):667–714. https://doi.org/10.1089/ars.2017.7225 [DOI: 10.1089/ars.2017.7225]
  237. Hass DT, Barnstable CJ (2016) Uncoupling protein 2 in the glial response to stress: implications for neuroprotection. Neural Regen Res 11(8):1197–1200. https://doi.org/10.4103/1673-5374.189159 [DOI: 10.4103/1673-5374.189159]
  238. Ho PW, Ho JW, Liu H-F, So DH, Tse ZH, Chan K-H, Ramsden DB, Ho S-L (2012) Mitochondrial neuronal uncoupling proteins: a target for potential disease-modification in Parkinson’s disease. Transl Neurodegeneration 1(1):3–3. https://doi.org/10.1186/2047-9158-1-3 [DOI: 10.1186/2047-9158-1-3]
  239. Diano S, Matthews RT, Patrylo P, Yang L, Beal MF, Barnstable CJ, Horvath TL (2003) Uncoupling protein 2 prevents neuronal death including that occurring during seizures: a mechanism for preconditioning. Endocrinology 144(11):5014–5021. https://doi.org/10.1210/en.2003-0667 [DOI: 10.1210/en.2003-0667]
  240. Andrews ZB, Diano S, Horvath TL (2005) Mitochondrial uncoupling proteins in the CNS: in support of function and survival. Nat Rev Neurosci 6(11):829–840. https://doi.org/10.1038/nrn1767 [DOI: 10.1038/nrn1767]
  241. Lapp DW, Zhang SS, Barnstable CJ (2014) Stat3 mediates LIF-induced protection of astrocytes against toxic ROS by upregulating the UPC2 mRNA pool. Glia 62(2):159–170. https://doi.org/10.1002/glia.22594 [DOI: 10.1002/glia.22594]
  242. De Simone R, Ajmone-Cat MA, Pandolfi M, Bernardo A, De Nuccio C, Minghetti L, Visentin S (2015) The mitochondrial uncoupling protein-2 is a master regulator of both M1 and M2 microglial responses. J Neurochem 135(1):147–156. https://doi.org/10.1111/jnc.13244 [DOI: 10.1111/jnc.13244]
  243. Andrews ZB (2010) Uncoupling protein-2 and the potential link between metabolism and longevity. Curr Aging Sci 3(2):102–112 [DOI: 10.2174/1874609811003020102]
  244. Hass DT, Barnstable CJ (2016) Uncoupling protein 2 in the glial response to stress: implications for neuroprotection. Neural Regen Res 11(8):1197–1200. https://doi.org/10.4103/1673-5374.189159 [DOI: 10.4103/1673-5374.189159]
  245. Du R-H, Wu F-F, Lu M, X-d S, Ding J-H, Wu G, Hu G (2016) Uncoupling protein 2 modulation of the NLRP3 inflammasome in astrocytes and its implications in depression. Redox Biol 9:178–187. https://doi.org/10.1016/j.redox.2016.08.006 [DOI: 10.1016/j.redox.2016.08.006]
  246. Hermes G, Nagy D, Waterson M, Zsarnovszky A, Varela L, Hajos M, Horvath TL (2016) Role of mitochondrial uncoupling protein-2 (UCP2) in higher brain functions, neuronal plasticity and network oscillation. Mol Metab 5(6):415–421. https://doi.org/10.1016/j.molmet.2016.04.002 [DOI: 10.1016/j.molmet.2016.04.002]
  247. Sun XL, Liu Y, Dai T, Ding JH, Hu G (2011) Uncoupling protein 2 knockout exacerbates depression-like behaviors in mice via enhancing inflammatory response. Neuroscience 192:507–514. https://doi.org/10.1016/j.neuroscience.2011.05.047 [DOI: 10.1016/j.neuroscience.2011.05.047]
  248. Gigante AD, Andreazza AC, Lafer B, Yatham LN, Beasley CL, Young LT (2011) Decreased mRNA expression of uncoupling protein 2, a mitochondrial proton transporter, in post-mortem prefrontal cortex from patients with bipolar disorder and schizophrenia. Neurosci Lett 505(1):47–51. https://doi.org/10.1016/j.neulet.2011.09.064 [DOI: 10.1016/j.neulet.2011.09.064]
  249. Ramsden DB, Ho PW, Ho JW, Liu HF, So DH, Tse HM, Chan KH, Ho SL (2012) Human neuronal uncoupling proteins 4 and 5 (UCP4 and UCP5): structural properties, regulation, and physiological role in protection against oxidative stress and mitochondrial dysfunction. Brain Behav 2(4):468–478. https://doi.org/10.1002/brb3.55 [DOI: 10.1002/brb3.55]
  250. Hyun DH, Emerson SS, Jo DG, Mattson MP, de Cabo R (2006) Calorie restriction up-regulates the plasma membrane redox system in brain cells and suppresses oxidative stress during aging. Proc Natl Acad Sci 103(52):19908–19912. https://doi.org/10.1073/pnas.0608008103 [DOI: 10.1073/pnas.0608008103]
  251. Hyun DH, Lee GH (2015) Cytochrome b5 reductase, a plasma membrane redox enzyme, protects neuronal cells against metabolic and oxidative stress through maintaining redox state and bioenergetics. Age (Dordr) 37(6):122. https://doi.org/10.1007/s11357-015-9859-9 [DOI: 10.1007/s11357-015-9859-9]
  252. Kim J, Kim SK, Kim HK, Mattson MP, Hyun DH (2013) Mitochondrial function in human neuroblastoma cells is up-regulated and protected by NQO1, a plasma membrane redox enzyme. PLoS One 8(7):e69030. https://doi.org/10.1371/journal.pone.0069030 [DOI: 10.1371/journal.pone.0069030]
  253. Hyun DH, Kim J, Moon C, Lim CJ, de Cabo R, Mattson MP (2012) The plasma membrane redox enzyme NQO1 sustains cellular energetics and protects human neuroblastoma cells against metabolic and proteotoxic stress. Age (Dordr) 34(2):359–370. https://doi.org/10.1007/s11357-011-9245-1 [DOI: 10.1007/s11357-011-9245-1]
  254. Hyun D-H, Hernandez JO, Mattson MP, de Cabo R (2006) The plasma membrane redox system in aging. Ageing Res Rev 5(2):209–220. https://doi.org/10.1016/j.arr.2006.03.005 [DOI: 10.1016/j.arr.2006.03.005]
  255. Dudek J (2017) Role of cardiolipin in mitochondrial signaling pathways. Front Cell Dev Biol 5:90. https://doi.org/10.3389/fcell.2017.00090 [DOI: 10.3389/fcell.2017.00090]
  256. Hyun D-H, Hunt ND, Emerson SS, Hernandez JO, Mattson MP, Rd C (2006) Up-regulation of plasma membrane-associated redox activities in neuronal cells lacking functional mitochondria. J Neurochem 100(5):1364–1374. https://doi.org/10.1111/j.1471-4159.2006.04411.x [DOI: 10.1111/j.1471-4159.2006.04411.x]
  257. Hyun DH, Hunt ND, Emerson SS, Hernandez JO, Mattson MP, de Cabo R (2007) Up-regulation of plasma membrane-associated redox activities in neuronal cells lacking functional mitochondria. J Neurochem 100(5):1364–1374. https://doi.org/10.1111/j.1471-4159.2006.04411.x [DOI: 10.1111/j.1471-4159.2006.04411.x]
  258. Navas P, Villalba JM, de Cabo R (2007) The importance of plasma membrane coenzyme Q in aging and stress responses. Mitochondrion (7 Suppl):S34–S40. https://doi.org/10.1016/j.mito.2007.02.010
  259. Navarro F, Navas P, Burgess JR, Bello RI, De Cabo R, Arroyo A, Villalba JM (1998) Vitamin E and selenium deficiency induces expression of the ubiquinone-dependent antioxidant system at the plasma membrane. FASEB J 12(15):1665–1673. https://doi.org/10.1096/fasebj.12.15.1665 [DOI: 10.1096/fasebj.12.15.1665]
  260. Arroyo A, Kagan VE, Tyurin VA, Burgess JR, de Cabo R, Navas P, Villalba JM (2000) NADH and NADPH-dependent reduction of coenzyme Q at the plasma membrane. Antioxid Redox Signal 2(2):251–262. https://doi.org/10.1089/ars.2000.2.2-251 [DOI: 10.1089/ars.2000.2.2-251]
  261. Beyer RE, Segura-Aguilar J, Di Bernardo S, Cavazzoni M, Fato R, Fiorentini D, Galli MC, Setti M et al (1996) The role of DT-diaphorase in the maintenance of the reduced antioxidant form of coenzyme Q in membrane systems. Proc Natl Acad Sci 93(6):2528–2532. https://doi.org/10.1073/pnas.93.6.2528 [DOI: 10.1073/pnas.93.6.2528]
  262. Kishi T, Takahashi T, Usui A, Hashizume N, Okamoto T (1999) Cytosolic NADPH-UQ reductase, the enzyme responsible for cellular ubiquinone redox cycle as an endogenous antioxidant in the rat liver. BioFactors (Oxford, England) 9(2–4):189–197. https://doi.org/10.1002/biof.5520090214 [DOI: 10.1002/biof.5520090214]
  263. Takahashi T, Okuno M, Okamoto T, Kishi T (2008) NADPH-dependent coenzyme Q reductase is the main enzyme responsible for the reduction of non-mitochondrial CoQ in cells. BioFactors (Oxford, England) 32(1–4):59–70 [DOI: 10.1002/biof.5520320108]
  264. Takahashi T, Yamaguchi T, Shitashige M, Okamoto T, Kishi T (1995) Reduction of ubiquinone in membrane lipids by rat liver cytosol and its involvement in the cellular defence system against lipid peroxidation. Biochem J 309(3):883–890. https://doi.org/10.1042/bj3090883 [DOI: 10.1042/bj3090883]
  265. Rushmore TH, Morton MR, Pickett CB (1991) The antioxidant responsive element. Activation by oxidative stress and identification of the DNA consensus sequence required for functional activity. J Biol Chem 266(18):11632–11639 [DOI: 10.1016/S0021-9258(18)99004-6]
  266. Kim HK, Son TG, Jo DG, Kim DC, Hyun DH (2016) Cytotoxicity of lipid-soluble ginseng extracts is attenuated by plasma membrane redox enzyme NQO1 through maintaining redox homeostasis and delaying apoptosis in human neuroblastoma cells. Arch Pharm Res 39(10):1339–1348. https://doi.org/10.1007/s12272-016-0817-6 [DOI: 10.1007/s12272-016-0817-6]
  267. Samhan-Arias AK, Marques-da-Silva D, Yanamala N, Gutierrez-Merino C (2012) Stimulation and clustering of cytochrome b5 reductase in caveolin-rich lipid microdomains is an early event in oxidative stress-mediated apoptosis of cerebellar granule neurons. J Proteome 75(10):2934–2949. https://doi.org/10.1016/j.jprot.2011.12.007 [DOI: 10.1016/j.jprot.2011.12.007]
  268. Schmelzer C, Lindner I, Rimbach G, Niklowitz P, Menke T, Doring F (2008) Functions of coenzyme Q10 in inflammation and gene expression. BioFactors (Oxford, England) 32(1–4):179–183. https://doi.org/10.1002/biof.5520320121 [DOI: 10.1002/biof.5520320121]
  269. Wagner AE, Ernst IMA, Birringer M, Sancak Ö, Barella L, Rimbach G (2012) A combination of lipoic acid plus coenzyme Q10 induces PGC1α, a master switch of energy metabolism, improves stress response, and increases cellular glutathione levels in cultured C2C12 skeletal muscle cells. Oxidative Med Cell Longev 2012:1–9. https://doi.org/10.1155/2012/835970 [DOI: 10.1155/2012/835970]
  270. Choi H-K, Pokharel YR, Lim SC, Han H-K, Ryu CS, Kim SK, Kwak MK, Kang KW (2009) Inhibition of liver fibrosis by solubilized coenzyme Q10: role of Nrf2 activation in inhibiting transforming growth factor-β1 expression. Toxicol Appl Pharmacol 240(3):377–384. https://doi.org/10.1016/j.taap.2009.07.030 [DOI: 10.1016/j.taap.2009.07.030]
  271. Garnier A, Fortin D, Zoll J, N’Guessan B, Mettauer B, Lampert E, Veksler V, Ventura-Clapier R (2005) Coordinated changes in mitochondrial function and biogenesis in healthy and diseased human skeletal muscle. FASEB J 19(1):43–52. https://doi.org/10.1096/fj.04-2173com [DOI: 10.1096/fj.04-2173com]
  272. Austin S, St-Pierre J (2012) PGC1α and mitochondrial metabolism – emerging concepts and relevance in ageing and neurodegenerative disorders. J Cell Sci 125(21):4963–4971. https://doi.org/10.1242/jcs.113662 [DOI: 10.1242/jcs.113662]
  273. Nijland PG, Witte ME, van het Hof B, van der Pol S, Bauer J, Lassmann H, van der Valk P, de Vries HE et al (2014) Astroglial PGC-1alpha increases mitochondrial antioxidant capacity and suppresses inflammation: implications for multiple sclerosis. Acta Neuropathol Commun 2(1):170. https://doi.org/10.1186/s40478-014-0170-2 [DOI: 10.1186/s40478-014-0170-2]
  274. Cheng C-F, Ku H-C, Lin H (2018) PGC-1α as a pivotal factor in lipid and metabolic regulation. Int J Mol Sci 19(11):3447. https://doi.org/10.3390/ijms19113447 [DOI: 10.3390/ijms19113447]
  275. Sweeney G, Song J (2016) The association between PGC-1α and Alzheimer’s disease. Anat Cell Biol 49(1):1–6. https://doi.org/10.5115/acb.2016.49.1.1 [DOI: 10.5115/acb.2016.49.1.1]
  276. McMeekin LJ, Lucas EK, Meador-Woodruff JH, McCullumsmith RE, Hendrickson RC, Gamble KL, Cowell RM (2016) Cortical PGC-1alpha-dependent transcripts are reduced in postmortem tissue from patients with schizophrenia. Schizophr Bull 42(4):1009–1017. https://doi.org/10.1093/schbul/sbv184 [DOI: 10.1093/schbul/sbv184]
  277. Nierenberg AA, Ghaznavi SA, Sande Mathias I, Ellard KK, Janos JA, Sylvia LG (2018) Peroxisome proliferator-activated receptor gamma coactivator-1 alpha as a novel target for bipolar disorder and other neuropsychiatric disorders. Biol Psychiatry 83(9):761–769. https://doi.org/10.1016/j.biopsych.2017.12.014 [DOI: 10.1016/j.biopsych.2017.12.014]
  278. Shen J, Rasmussen M, Dong QR, Tepel M, Scholze A (2017) Expression of the NRF2 target gene NQO1 is enhanced in mononuclear cells in human chronic kidney disease. Oxidative Med Cell Longev 2017:9091879. https://doi.org/10.1155/2017/9091879 [DOI: 10.1155/2017/9091879]
  279. Thekkeveedu RK, Chu C, Moorthy B (2018) Role of Nrf2 and NQO1 in the attenuation of oxygen-mediated pulmonary toxicity by sulforaphane. Pediatrics 142(1 MeetingAbstract):178–178. https://doi.org/10.1542/peds.142.1_MeetingAbstract.178 [DOI: 10.1542/peds.142.1_MeetingAbstract.178]
  280. Tian G, Sawashita J, Kubo H, Nishio S-Y, Hashimoto S, Suzuki N, Yoshimura H, Tsuruoka M et al (2014) Ubiquinol-10 supplementation activates mitochondria functions to decelerate senescence in senescence-accelerated mice. Antioxid Redox Signal 20(16):2606–2620. https://doi.org/10.1089/ars.2013.5406 [DOI: 10.1089/ars.2013.5406]
  281. Morris G, Berk M, Walder K, Maes M (2015) Central pathways causing fatigue in neuro-inflammatory and autoimmune illnesses. BMC Med 13(1):28 [DOI: 10.1186/s12916-014-0259-2]
  282. Schmelzer C, Kitano M, Hosoe K, Doring F (2012) Ubiquinol affects the expression of genes involved in PPARalpha signalling and lipid metabolism without changes in methylation of CpG promoter islands in the liver of mice. J Clin Biochem Nutr 50(2):119–126. https://doi.org/10.3164/jcbn.11-19 [DOI: 10.3164/jcbn.11-19]
  283. Schmelzer C, Kubo H, Mori M, Sawashita J, Kitano M, Hosoe K, Boomgaarden I, Döring F et al (2009) Supplementation with the reduced form of coenzyme Q10 decelerates phenotypic characteristics of senescence and induces a peroxisome proliferator-activated receptor-α gene expression signature in SAMP1 mice. Mol Nutr Food Res 54(6):805–815. https://doi.org/10.1002/mnfr.200900155 [DOI: 10.1002/mnfr.200900155]
  284. Abd El-Aal SA, Abd El-Fattah MA, El-Abhar HS (2017) CoQ10 augments rosuvastatin neuroprotective effect in a model of global ischemia via inhibition of NF-kappaB/JNK3/Bax and activation of Akt/FOXO3A/Bim cues. Front Pharmacol 8:735. https://doi.org/10.3389/fphar.2017.00735 [DOI: 10.3389/fphar.2017.00735]
  285. Miller VJ, Villamena FA, Volek JS (2018) Nutritional ketosis and mitohormesis: potential implications for mitochondrial function and human health. J Nutr Metab 2018:5157645. https://doi.org/10.1155/2018/5157645 [DOI: 10.1155/2018/5157645]
  286. Sanchez-Barcelo EJ, Mediavilla MD, Tan DX, Reiter RJ (2010) Clinical uses of melatonin: evaluation of human trials. Curr Med Chem 17(19):2070–2095. https://doi.org/10.2174/092986710791233689 [DOI: 10.2174/092986710791233689]
  287. Opie LH, Lecour S (2016) Melatonin has multiorgan effects. Eur Heart J - Cardiovasc Pharmacother 2(4):258–265. https://doi.org/10.1093/ehjcvp/pvv037 [DOI: 10.1093/ehjcvp/pvv037]
  288. Jiki Z, Lecour S, Nduhirabandi F (2018) Cardiovascular benefits of dietary melatonin: a myth or a reality? Front Physiol 9:528–528. https://doi.org/10.3389/fphys.2018.00528 [DOI: 10.3389/fphys.2018.00528]
  289. Morera-Fumero AL, Abreu-Gonzalez P (2013) Role of melatonin in schizophrenia. Int J Mol Sci 14(5):9037–9050. https://doi.org/10.3390/ijms14059037 [DOI: 10.3390/ijms14059037]
  290. Geoffroy PA, Etain B, Franchi JA, Bellivier F, Ritter P (2015) Melatonin and melatonin agonists as adjunctive treatments in bipolar disorders. Curr Pharm Des 21(23):3352–3358. https://doi.org/10.2174/1381612821666150619093448 [DOI: 10.2174/1381612821666150619093448]
  291. Mahmood D, Muhammad BY, Alghani M, Anwar J, el-Lebban N, Haider M (2016) Advancing role of melatonin in the treatment of neuropsychiatric disorders. Egypt J Basic Appl Sci 3(3):203–218. https://doi.org/10.1016/j.ejbas.2016.07.001 [DOI: 10.1016/j.ejbas.2016.07.001]
  292. Gargoloff PD, Corral R, Herbst L, Marquez M, Martinotti G, Gargoloff PR (2016) Effectiveness of agomelatine on anhedonia in depressed patients: an outpatient, open-label, real-world study. Human Psychopharmacol 31(6):412–418. https://doi.org/10.1002/hup.2557 [DOI: 10.1002/hup.2557]
  293. Rodriguez MI, Carretero M, Escames G, Lopez LC, Maldonado MD, Tan DX, Reiter RJ, Acuna-Castroviejo D (2007) Chronic melatonin treatment prevents age-dependent cardiac mitochondrial dysfunction in senescence-accelerated mice. Free Radic Res 41(1):15–24. https://doi.org/10.1080/10715760600936359 [DOI: 10.1080/10715760600936359]
  294. Acuña-Castroviejo D, López LC, Escames G, Lopez A, Garcia JA, Reiter RJ (2011) Melatonin-mitochondria interplay in health and disease. Curr Top Med Chem 11(2):221–240. https://doi.org/10.2174/156802611794863517 [DOI: 10.2174/156802611794863517]
  295. Lopez LC, Escames G, Ortiz F, Ros E, Acuna-Castroviejo D (2006) Melatonin restores the mitochondrial production of ATP in septic mice. Neuro Endocrinol Lett 27(5):623–630 [PMID: 17159820]
  296. Garcia JJ, Pinol-Ripoll G, Martinez-Ballarin E, Fuentes-Broto L, Miana-Mena FJ, Venegas C, Caballero B, Escames G et al (2011) Melatonin reduces membrane rigidity and oxidative damage in the brain of SAMP8 mice. Neurobiol Aging 32(11):2045–2054. https://doi.org/10.1016/j.neurobiolaging.2009.12.013 [DOI: 10.1016/j.neurobiolaging.2009.12.013]
  297. Carretero M, Escames G, Lopez LC, Venegas C, Dayoub JC, Garcia L, Acuna-Castroviejo D (2009) Long-term melatonin administration protects brain mitochondria from aging. J Pineal Res 47(2):192–200. https://doi.org/10.1111/j.1600-079X.2009.00700.x [DOI: 10.1111/j.1600-079X.2009.00700.x]
  298. Escames G, López A, García JA, García L, Acuña-Castroviejo D, García JJ, López LC (2010) The role of mitochondria in brain aging and the effects of melatonin. Curr Neuropharmacol 8(3):182–193. https://doi.org/10.2174/157015910792246245 [DOI: 10.2174/157015910792246245]
  299. Petrosillo G, Fattoretti P, Matera M, Ruggiero FM, Bertoni-Freddari C, Paradies G (2008) Melatonin prevents age-related mitochondrial dysfunction in rat brain via cardiolipin protection. Rejuvenation Res 11(5):935–943. https://doi.org/10.1089/rej.2008.0772 [DOI: 10.1089/rej.2008.0772]
  300. Mecha M, Feliu A, Machin I, Cordero C, Carrillo-Salinas F, Mestre L, Hernandez-Torres G, Ortega-Gutierrez S et al (2018) 2-AG limits Theiler’s virus induced acute neuroinflammation by modulating microglia and promoting MDSCs. Glia 66(7):1447–1463. https://doi.org/10.1002/glia.23317 [DOI: 10.1002/glia.23317]
  301. Yang L, Wang J, Deng Y, Gong C, Li Q, Chen Q, Li H, Jiang C et al (2018) Melatonin improves neurological outcomes and preserves hippocampal mitochondrial function in a rat model of cardiac arrest. PLoS One 13(11):e0207098. https://doi.org/10.1371/journal.pone.0207098 [DOI: 10.1371/journal.pone.0207098]
  302. Brazao V, Santello FH, Colato RP, Mazotti TT, Tazinafo LF, Toldo MPA, do Vale GT, Tirapelli CR et al (2017) Melatonin: antioxidant and modulatory properties in age-related changes during Trypanosoma cruzi infection. J Pineal Res 63(1):110922. https://doi.org/10.1111/jpi.12409 [DOI: 10.1111/jpi.12409]
  303. Reiter RJ, Rosales-Corral S, Tan DX, Jou MJ, Galano A, Xu B (2017) Melatonin as a mitochondria-targeted antioxidant: one of evolution’s best ideas. Cell Mol Life Sci 74(21):3863–3881. https://doi.org/10.1007/s00018-017-2609-7 [DOI: 10.1007/s00018-017-2609-7]
  304. Venegas C, Garcia JA, Escames G, Ortiz F, Lopez A, Doerrier C, Garcia-Corzo L, Lopez LC et al (2012) Extrapineal melatonin: analysis of its subcellular distribution and daily fluctuations. J Pineal Res 52(2):217–227. https://doi.org/10.1111/j.1600-079X.2011.00931.x [DOI: 10.1111/j.1600-079X.2011.00931.x]
  305. Mayo JC, Sainz RM, Gonzalez-Menendez P, Hevia D, Cernuda-Cernuda R (2017) Melatonin transport into mitochondria. Cell Mol Life Sci 74(21):3927–3940. https://doi.org/10.1007/s00018-017-2616-8 [DOI: 10.1007/s00018-017-2616-8]
  306. Jou MJ, Peng TI, Yu PZ, Jou SB, Reiter RJ, Chen JY, Wu HY, Chen CC et al (2007) Melatonin protects against common deletion of mitochondrial DNA-augmented mitochondrial oxidative stress and apoptosis. J Pineal Res 43(4):389–403. https://doi.org/10.1111/j.1600-079X.2007.00490.x [DOI: 10.1111/j.1600-079X.2007.00490.x]
  307. Lowes DA, Webster NR, Murphy MP, Galley HF (2013) Antioxidants that protect mitochondria reduce interleukin-6 and oxidative stress, improve mitochondrial function, and reduce biochemical markers of organ dysfunction in a rat model of acute sepsis. Br J Anaesth 110(3):472–480. https://doi.org/10.1093/bja/aes577 [DOI: 10.1093/bja/aes577]
  308. Reiter RJ, Tan DX, Rosales-Corral S, Galano A, Zhou XJ, Xu B (2018) Mitochondria: central organelles for melatonin’s antioxidant and anti-aging actions. Molecules (Basel, Switzerland) 23(2):509. https://doi.org/10.3390/molecules23020509 [DOI: 10.3390/molecules23020509]
  309. Galano A, Tan DX, Reiter RJ (2018) Melatonin: a versatile protector against oxidative DNA damage. Molecules 23(3):530. https://doi.org/10.3390/molecules23030530 [DOI: 10.3390/molecules23030530]
  310. Reiter RJ, Tan DX, Rosales-Corral S, Galano A, Jou MJ, Acuna-Castroviejo D (2018) Melatonin mitigates mitochondrial meltdown: interactions with SIRT3. Int J Mol Sci 19(8):2439. https://doi.org/10.3390/ijms19082439 [DOI: 10.3390/ijms19082439]
  311. Galano A, Tan DX, Reiter RJ (2013) On the free radical scavenging activities of melatonin’s metabolites, AFMK and AMK. J Pineal Res 54(3):245–257. https://doi.org/10.1111/jpi.12010 [DOI: 10.1111/jpi.12010]
  312. Reina M, Martínez A (2018) A new free radical scavenging cascade involving melatonin and three of its metabolites (3OHM, AFMK and AMK). Comput Theor Chem 1123:111–118. https://doi.org/10.1016/j.comptc.2017.11.017 [DOI: 10.1016/j.comptc.2017.11.017]
  313. Escames G, Lopez LC, Tapias V, Utrilla P, Reiter RJ, Hitos AB, Leon J, Rodriguez MI et al (2006) Melatonin counteracts inducible mitochondrial nitric oxide synthase-dependent mitochondrial dysfunction in skeletal muscle of septic mice. J Pineal Res 40(1):71–78. https://doi.org/10.1111/j.1600-079X.2005.00281.x [DOI: 10.1111/j.1600-079X.2005.00281.x]
  314. Tapias V, Escames G, Lopez LC, Lopez A, Camacho E, Carrion MD, Entrena A, Gallo MA et al (2009) Melatonin and its brain metabolite N(1)-acetyl-5-methoxykynuramine prevent mitochondrial nitric oxide synthase induction in parkinsonian mice. J Neurosci Res 87(13):3002–3010. https://doi.org/10.1002/jnr.22123 [DOI: 10.1002/jnr.22123]
  315. Parameyong A, Govitrapong P, Chetsawang B (2015) Melatonin attenuates the mitochondrial translocation of mitochondrial fission proteins and Bax, cytosolic calcium overload and cell death in methamphetamine-induced toxicity in neuroblastoma SH-SY5Y cells. Mitochondrion 24:1–8. https://doi.org/10.1016/j.mito.2015.07.004 [DOI: 10.1016/j.mito.2015.07.004]
  316. Parameyong A, Charngkaew K, Govitrapong P, Chetsawang B (2013) Melatonin attenuates methamphetamine-induced disturbances in mitochondrial dynamics and degeneration in neuroblastoma SH-SY5Y cells. J Pineal Res 55(3):313–323. https://doi.org/10.1111/jpi.12078 [DOI: 10.1111/jpi.12078]
  317. Suwanjang W, Abramov AY, Charngkaew K, Govitrapong P, Chetsawang B (2016) Melatonin prevents cytosolic calcium overload, mitochondrial damage and cell death due to toxically high doses of dexamethasone-induced oxidative stress in human neuroblastoma SH-SY5Y cells. Neurochem Int 97:34–41. https://doi.org/10.1016/j.neuint.2016.05.003 [DOI: 10.1016/j.neuint.2016.05.003]
  318. Lin C, Chao H, Li Z, Xu X, Liu Y, Hou L, Liu N, Ji J (2016) Melatonin attenuates traumatic brain injury-induced inflammation: a possible role for mitophagy. J Pineal Res 61(2):177–186. https://doi.org/10.1111/jpi.12337 [DOI: 10.1111/jpi.12337]
  319. Hsiao C-W, Peng T-I, Peng AC, Reiter RJ, Tanaka M, Lai Y-K, Jou M-J (2013) Long-term Aβ exposure augments mCa2+-independent mROS-mediated depletion of cardiolipin for the shift of a lethal transient mitochondrial permeability transition to its permanent mode in NARP cybrids: a protective targeting of melatonin. J Pineal Res 54(1):107–125. https://doi.org/10.1111/jpi.12004 [DOI: 10.1111/jpi.12004]
  320. Gilkerson R (2018) A disturbance in the force: cellular stress sensing by the mitochondrial network. Antioxidants (Basel, Switzerland) 7(10):126. https://doi.org/10.3390/antiox7100126 [DOI: 10.3390/antiox7100126]
  321. Galloway CA, Lee H, Yoon Y (2012) Mitochondrial morphology-emerging role in bioenergetics. Free Radic Biol Med 53(12):2218–2228. https://doi.org/10.1016/j.freeradbiomed.2012.09.035 [DOI: 10.1016/j.freeradbiomed.2012.09.035]
  322. Song C, Zhao J, Fu B, Li D, Mao T, Peng W, Wu H, Zhang Y (2017) Melatonin-mediated upregulation of Sirt3 attenuates sodium fluoride-induced hepatotoxicity by activating the MT1-PI3K/AKT-PGC-1alpha signaling pathway. Free Radic Biol Med 112:616–630. https://doi.org/10.1016/j.freeradbiomed.2017.09.005 [DOI: 10.1016/j.freeradbiomed.2017.09.005]
  323. Zhou W, Liu Y, Shen J, Yu B, Bai J, Lin J, Guo X, Sun H et al (2019) Melatonin increases bone mass around the prostheses of OVX rats by ameliorating mitochondrial oxidative stress via the SIRT3/SOD2 signaling pathway. Oxidative Med Cell Longev 2019:16. https://doi.org/10.1155/2019/4019619 [DOI: 10.1155/2019/4019619]
  324. Kincaid B, Bossy-Wetzel E (2013) Forever young: SIRT3 a shield against mitochondrial meltdown, aging, and neurodegeneration. Front Aging Neurosci 5:48. https://doi.org/10.3389/fnagi.2013.00048 [DOI: 10.3389/fnagi.2013.00048]
  325. Hardeland R (2017) Melatonin and the electron transport chain. Cell Mol Life Sci 74(21):3883–3896. https://doi.org/10.1007/s00018-017-2615-9 [DOI: 10.1007/s00018-017-2615-9]
  326. Yu L, Gong B, Duan W, Fan C, Zhang J, Li Z, Xue X, Xu Y et al (2017) Melatonin ameliorates myocardial ischemia/reperfusion injury in type 1 diabetic rats by preserving mitochondrial function: role of AMPK-PGC-1alpha-SIRT3 signaling. Sci Rep 7:41337. https://doi.org/10.1038/srep41337 [DOI: 10.1038/srep41337]
  327. Zhai M, Li B, Duan W, Jing L, Zhang B, Zhang M, Yu L, Liu Z et al (2017) Melatonin ameliorates myocardial ischemia reperfusion injury through SIRT3-dependent regulation of oxidative stress and apoptosis. J Pineal Res 63(2):e12419. https://doi.org/10.1111/jpi.12419 [DOI: 10.1111/jpi.12419]
  328. Wacker D, Stevens RC, Roth BL (2017) How ligands illuminate GPCR molecular pharmacology. Cell 170(3):414–427. https://doi.org/10.1016/j.cell.2017.07.009 [DOI: 10.1016/j.cell.2017.07.009]
  329. Cecon E, Oishi A, Jockers R (2018) Melatonin receptors: molecular pharmacology and signalling in the context of system bias. Br J Pharmacol 175(16):3263–3280. https://doi.org/10.1111/bph.13950 [DOI: 10.1111/bph.13950]
  330. Ahluwalia A, Brzozowska IM, Hoa N, Jones MK, Tarnawski AS (2018) Melatonin signaling in mitochondria extends beyond neurons and neuroprotection: implications for angiogenesis and cardio/gastroprotection. Proc Natl Acad Sci 115(9):E1942–E1943. https://doi.org/10.1073/pnas.1722131115 [DOI: 10.1073/pnas.1722131115]
  331. Suofu Y, Li W, Jean-Alphonse FG, Jia J, Khattar NK, Li J, Baranov SV, Leronni D et al (2017) Dual role of mitochondria in producing melatonin and driving GPCR signaling to block cytochrome c release. Proc Natl Acad Sci U S A 114(38):E7997–E8006. https://doi.org/10.1073/pnas.1705768114 [DOI: 10.1073/pnas.1705768114]
  332. Koh PO (2008) Melatonin prevents ischemic brain injury through activation of the mTOR/p70S6 kinase signaling pathway. Neurosci Lett 444(1):74–78. https://doi.org/10.1016/j.neulet.2008.08.024 [DOI: 10.1016/j.neulet.2008.08.024]
  333. Liu D, Ma Z, Di S, Yang Y, Yang J, Xu L, Reiter RJ, Qiao S et al (2018) AMPK/PGC1alpha activation by melatonin attenuates acute doxorubicin cardiotoxicity via alleviating mitochondrial oxidative damage and apoptosis. Free Radic Biol Med 129:59–72. https://doi.org/10.1016/j.freeradbiomed.2018.08.032 [DOI: 10.1016/j.freeradbiomed.2018.08.032]
  334. Rui BB, Chen H, Jang L, Li Z, Yang JM, Xu WP, Wei W (2016) Melatonin upregulates the activity of AMPK and attenuates lipid accumulation in alcohol-induced rats. Alcohol Alcohol (Oxford, Oxfordshire) 51(1):11–19. https://doi.org/10.1093/alcalc/agv126 [DOI: 10.1093/alcalc/agv126]
  335. Janjetovic Z, Jarrett SG, Lee EF, Duprey C, Reiter RJ, Slominski AT (2017) Melatonin and its metabolites protect human melanocytes against UVB-induced damage: involvement of NRF2-mediated pathways. Sci Rep 7(1):1274. https://doi.org/10.1038/s41598-017-01305-2 [DOI: 10.1038/s41598-017-01305-2]
  336. Kleszczynski K, Zillikens D, Fischer TW (2016) Melatonin enhances mitochondrial ATP synthesis, reduces reactive oxygen species formation, and mediates translocation of the nuclear erythroid 2-related factor 2 resulting in activation of phase-2 antioxidant enzymes (gamma-GCS, HO-1, NQO1) in ultraviolet radiation-treated normal human epidermal keratinocytes (NHEK). J Pineal Res 61(2):187–197. https://doi.org/10.1111/jpi.12338 [DOI: 10.1111/jpi.12338]
  337. Morris G, Puri BK, Walker AJ, Berk M, Walder K, Bortolasci CC, Marx W, Carvalho AF et al (2019) The compensatory antioxidant response system with a focus on neuroprogressive disorders. Progress Neuro-psychopharmacol Biol Psychiatry 95:109708. https://doi.org/10.1016/j.pnpbp.2019.109708 [DOI: 10.1016/j.pnpbp.2019.109708]
  338. Cao S, Shrestha S, Li J, Yu X, Chen J, Yan F, Ying G, Gu C et al (2017) Melatonin-mediated mitophagy protects against early brain injury after subarachnoid hemorrhage through inhibition of NLRP3 inflammasome activation. Sci Rep 7(1):2417. https://doi.org/10.1038/s41598-017-02679-z [DOI: 10.1038/s41598-017-02679-z]
  339. Wang X, Xue G-X, Liu W-C, Shu H, Wang M, Sun Y, Liu X, Sun YE et al (2017) Melatonin alleviates lipopolysaccharide-compromised integrity of blood–brain barrier through activating AMP-activated protein kinase in old mice. Aging Cell 16(2):414–421. https://doi.org/10.1111/acel.12572 [DOI: 10.1111/acel.12572]
  340. Hu Y, Wang Z, Pan S, Zhang H, Fang M, Jiang H, Zhang H, Gao Z et al (2017) Melatonin protects against blood-brain barrier damage by inhibiting the TLR4/ NF-κB signaling pathway after LPS treatment in neonatal rats. Oncotarget 8(19):31638–31654. https://doi.org/10.18632/oncotarget.15780 [DOI: 10.18632/oncotarget.15780]
  341. Liu WC, Wang X, Zhang X, Chen X, Jin X (2017) Melatonin supplementation, a strategy to prevent neurological diseases through maintaining integrity of blood brain barrier in old people. Front Aging Neurosci 9:165. https://doi.org/10.3389/fnagi.2017.00165 [DOI: 10.3389/fnagi.2017.00165]
  342. Sommansson A, Yamskova O, Schioth HB, Nylander O, Sjoblom M (2014) Long-term oral melatonin administration reduces ethanol-induced increases in duodenal mucosal permeability and motility in rats. Acta Physiol (Oxford) 212(2):152–165. https://doi.org/10.1111/apha.12339 [DOI: 10.1111/apha.12339]
  343. Sommansson A, Nylander O, Sjoblom M (2013) Melatonin decreases duodenal epithelial paracellular permeability via a nicotinic receptor-dependent pathway in rats in vivo. J Pineal Res 54(3):282–291. https://doi.org/10.1111/jpi.12013 [DOI: 10.1111/jpi.12013]
  344. Sommansson A, Saudi WSW, Nylander O, Sjöblom M (2013) Melatonin inhibits alcohol-induced increases in duodenal mucosal permeability in rats in vivo. Am J Physiol Gastrointest Liver Physiol 305(1):G95–G105. https://doi.org/10.1152/ajpgi.00074.2013 [DOI: 10.1152/ajpgi.00074.2013]
  345. Lucas K, Morris G, Anderson G, Maes M (2015) The Toll-like receptor radical cycle pathway: a new drug target in immune-related chronic fatigue. CNS Neurol Disorders - Drug Targets (Formerly Curr Drug Targets) 14(7):838–854 [DOI: 10.2174/1871527314666150317224645]
  346. Maes M, Kubera M, Leunis JC, Berk M, Geffard M, Bosmans E (2013) In depression, bacterial translocation may drive inflammatory responses, oxidative and nitrosative stress (O&NS), and autoimmune responses directed against O&NS-damaged neoepitopes. Acta Psychiatr Scand 127(5):344–354. https://doi.org/10.1111/j.1600-0447.2012.01908.x [DOI: 10.1111/j.1600-0447.2012.01908.x]
  347. Simeonova D, Stoyanov D, Leunis JC, Carvalho AF, Kubera M, Murdjeva M, Maes M (2019) Increased serum immunoglobulin responses to gut commensal gram-negative bacteria in unipolar major depression and bipolar disorder type 1, especially when melancholia is present. Neurotox Res. https://doi.org/10.1007/s12640-019-00126-7
  348. Maes M, Sirivichayakul S, Kanchanatawan B, Vodjani A (2019) Breakdown of the paracellular tight and adherens junctions in the gut and blood brain barrier and damage to the vascular barrier in patients with deficit schizophrenia. Neurotox Res 36(2):306–322. https://doi.org/10.1007/s12640-019-00054-6 [DOI: 10.1007/s12640-019-00054-6]
  349. Yin J, Li Y, Han H, Chen S, Gao J, Liu G, Wu X, Deng J et al (2018) Melatonin reprogramming of gut microbiota improves lipid dysmetabolism in high-fat diet-fed mice. J Pineal Res 65(4):e12524. https://doi.org/10.1111/jpi.12524 [DOI: 10.1111/jpi.12524]
  350. Xu P, Wang J, Hong F, Wang S, Jin X, Xue T, Jia L, Zhai Y (2017) Melatonin prevents obesity through modulation of gut microbiota in mice. J Pineal Res 62(4):e12399. https://doi.org/10.1111/jpi.12399 [DOI: 10.1111/jpi.12399]
  351. Morris G, Berk M, Carvalho A, Caso JR, Sanz Y, Walder K, Maes M (2017) The role of the microbial metabolites including tryptophan catabolites and short chain fatty acids in the pathophysiology of immune-inflammatory and neuroimmune disease. Mol Neurobiol 54(6):4432–4451. https://doi.org/10.1007/s12035-016-0004-2 [DOI: 10.1007/s12035-016-0004-2]
  352. Morris G, Fernandes BS, Puri BK, Walker AJ, Carvalho AF, Berk M (2018) Leaky brain in neurological and psychiatric disorders: drivers and consequences. Aust NZ J Psychiatry 52(10):924–948. https://doi.org/10.1177/0004867418796955 [DOI: 10.1177/0004867418796955]
  353. Permpoonputtana K, Tangweerasing P, Mukda S, Boontem P, Nopparat C, Govitrapong P (2018) Long-term administration of melatonin attenuates neuroinflammation in the aged mouse brain. EXCLI J 17:634–646. https://doi.org/10.17179/excli2017-654 [DOI: 10.17179/excli2017-654]
  354. Singhakumar R, Boontem P, Ekthuwapranee K, Sotthibundhu A, Mukda S, Chetsawang B, Govitrapong P (2015) Melatonin attenuates methamphetamine-induced inhibition of neurogenesis in the adult mouse hippocampus: an in vivo study. Neurosci Lett 606:209–214. https://doi.org/10.1016/j.neulet.2015.09.011 [DOI: 10.1016/j.neulet.2015.09.011]
  355. Tyagi E, Agrawal R, Nath C, Shukla R (2010) Effect of melatonin on neuroinflammation and acetylcholinesterase activity induced by LPS in rat brain. Eur J Pharmacol 640(1–3):206–210. https://doi.org/10.1016/j.ejphar.2010.04.041 [DOI: 10.1016/j.ejphar.2010.04.041]
  356. Ali T, Rehman SU, Shah FA, Kim MO (2018) Acute dose of melatonin via Nrf2 dependently prevents acute ethanol-induced neurotoxicity in the developing rodent brain. J Neuroinflammation 15(1):119. https://doi.org/10.1186/s12974-018-1157-x [DOI: 10.1186/s12974-018-1157-x]
  357. Hu L, Zhang S, Wen H, Liu T, Cai J, Du D, Zhu D, Chen F et al (2019) Melatonin decreases M1 polarization via attenuating mitochondrial oxidative damage depending on UCP2 pathway in prorenin-treated microglia. PLoS One 14(2):e0212138. https://doi.org/10.1371/journal.pone.0212138 [DOI: 10.1371/journal.pone.0212138]
  358. Ding K, Wang H, Xu J, Lu X, Zhang L, Zhu L (2014) Melatonin reduced microglial activation and alleviated neuroinflammation induced neuron degeneration in experimental traumatic brain injury: possible involvement of mTOR pathway. Neurochem Int 76:23–31. https://doi.org/10.1016/j.neuint.2014.06.015 [DOI: 10.1016/j.neuint.2014.06.015]
  359. Zheng ZV, Wong KCG (2019) Microglial activation and polarization after subarachnoid hemorrhage. Neuroimmunol Neuroinflamm. https://doi.org/10.20517/2347-8659.2018.52
  360. Azedi F, Mehrpour M, Talebi S, Zendedel A, Kazemnejad S, Mousavizadeh K, Beyer C, Zarnani AH et al (2019) Melatonin regulates neuroinflammation ischemic stroke damage through interactions with microglia in reperfusion phase. Brain Res 1723:146401. https://doi.org/10.1016/j.brainres.2019.146401 [DOI: 10.1016/j.brainres.2019.146401]
  361. Sutcu R, Yonden Z, Yilmaz A, Delibas N (2006) Melatonin increases NMDA receptor subunits 2A and 2B concentrations in rat hippocampus. Mol Cell Biochem 283(1):101–105. https://doi.org/10.1007/s11010-006-2385-4 [DOI: 10.1007/s11010-006-2385-4]
  362. Camkurt MA, Findikli E, Izci F, Kurutas EB, Tuman TC (2016) Evaluation of malondialdehyde, superoxide dismutase and catalase activity and their diagnostic value in drug naive, first episode, non-smoker major depression patients and healthy controls. Psychiatry Res 238:81–85. https://doi.org/10.1016/j.psychres.2016.01.075 [DOI: 10.1016/j.psychres.2016.01.075]
  363. Bavithra S, Sugantha Priya E, Selvakumar K, Krishnamoorthy G, Arunakaran J (2015) Effect of melatonin on glutamate: BDNF signaling in the cerebral cortex of polychlorinated biphenyls (PCBs)-exposed adult male rats. Neurochem Res 40(9):1858–1869. https://doi.org/10.1007/s11064-015-1677-z [DOI: 10.1007/s11064-015-1677-z]
  364. Singhal NK, Srivastava G, Agrawal S, Jain SK, Singh MP (2012) Melatonin as a neuroprotective agent in the rodent models of Parkinson’s disease: is it all set to irrefutable clinical translation? Mol Neurobiol 45(1):186–199. https://doi.org/10.1007/s12035-011-8225-x [DOI: 10.1007/s12035-011-8225-x]
  365. Hashimoto K, Ueda S, Ehara A, Sakakibara S, Yoshimoto K, Hirata K (2012) Neuroprotective effects of melatonin on the nigrostriatal dopamine system in the zitter rat. Neurosci Lett 506(1):79–83. https://doi.org/10.1016/j.neulet.2011.10.053 [DOI: 10.1016/j.neulet.2011.10.053]
  366. Zaitone SA, Hammad LN, Farag NE (2013) Antioxidant potential of melatonin enhances the response to L-dopa in 1-methyl 4-phenyl 1,2,3,6-tetrahydropyridine-parkinsonian mice. Pharmacol Rep : PR 65(5):1213–1226 [DOI: 10.1016/S1734-1140(13)71479-8]
  367. Naskar A, Prabhakar V, Singh R, Dutta D, Mohanakumar KP (2015) Melatonin enhances L-DOPA therapeutic effects, helps to reduce its dose, and protects dopaminergic neurons in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced parkinsonism in mice. J Pineal Res 58(3):262–274. https://doi.org/10.1111/jpi.12212 [DOI: 10.1111/jpi.12212]
  368. Uz T, Arslan AD, Kurtuncu M, Imbesi M, Akhisaroglu M, Dwivedi Y, Pandey GN, Manev H (2005) The regional and cellular expression profile of the melatonin receptor MT1 in the central dopaminergic system. Brain Res Mol Brain Res 136(1–2):45–53. https://doi.org/10.1016/j.molbrainres.2005.01.002 [DOI: 10.1016/j.molbrainres.2005.01.002]
  369. Benleulmi-Chaachoua A, Hegron A, Le Boulch M, Karamitri A, Wierzbicka M, Wong V, Stagljar I, Delagrange P et al (2018) Melatonin receptors limit dopamine reuptake by regulating dopamine transporter cell-surface exposure. Cell Mol Life Sci 75(23):4357–4370. https://doi.org/10.1007/s00018-018-2876-y [DOI: 10.1007/s00018-018-2876-y]
  370. Alexiuk NA, Vriend J (2007) Melatonin: effects on dopaminergic and serotonergic neurons of the caudate nucleus of the striatum of male Syrian hamsters. J Neural Transm (Vienna, Austria : 1996) 114(5):549–554. https://doi.org/10.1007/s00702-006-0582-7 [DOI: 10.1007/s00702-006-0582-7]
  371. Monti JM, BaHammam AS, Pandi-Perumal SR, Bromundt V, Spence DW, Cardinali DP, Brown GM (2013) Sleep and circadian rhythm dysregulation in schizophrenia. Prog Neuro-Psychopharmacol Biol Psychiatry 43:209–216. https://doi.org/10.1016/j.pnpbp.2012.12.021 [DOI: 10.1016/j.pnpbp.2012.12.021]
  372. Nuernberg GL, Aguiar B, Bristot G, Fleck MP, Rocha NS (2016) Brain-derived neurotrophic factor increase during treatment in severe mental illness inpatients. Transl Psychiatry 6(12):e985. https://doi.org/10.1038/tp.2016.227 [DOI: 10.1038/tp.2016.227]
  373. Jung-Hynes B, Huang W, Reiter RJ, Ahmad N (2010) Melatonin resynchronizes dysregulated circadian rhythm circuitry in human prostate cancer cells. J Pineal Res 49(1):60–68. https://doi.org/10.1111/j.1600-079X.2010.00767.x [DOI: 10.1111/j.1600-079X.2010.00767.x]
  374. Gonzalez-Fernandez B, Sanchez DI, Crespo I, San-Miguel B, de Urbina JO, Gonzalez-Gallego J, Tunon MJ (2018) Melatonin attenuates dysregulation of the circadian clock pathway in mice with CCl4-induced fibrosis and human hepatic stellate cells. Front Pharmacol 9:556. https://doi.org/10.3389/fphar.2018.00556 [DOI: 10.3389/fphar.2018.00556]
  375. Schmitt K, Holsboer-Trachsler E, Eckert A (2016) BDNF in sleep, insomnia, and sleep deprivation. Ann Med 48(1–2):42–51. https://doi.org/10.3109/07853890.2015.1131327 [DOI: 10.3109/07853890.2015.1131327]
  376. Morris G, Stubbs B, Kohler CA, Walder K, Slyepchenko A, Berk M, Carvalho AF (2018) The putative role of oxidative stress and inflammation in the pathophysiology of sleep dysfunction across neuropsychiatric disorders: focus on chronic fatigue syndrome, bipolar disorder and multiple sclerosis. Sleep Med Rev 41:255–265. https://doi.org/10.1016/j.smrv.2018.03.007 [DOI: 10.1016/j.smrv.2018.03.007]
  377. Cardinali DP (2019) Melatonin: clinical perspectives in neurodegeneration. Front Endocrinol (Lausanne) 10:480. https://doi.org/10.3389/fendo.2019.00480 [DOI: 10.3389/fendo.2019.00480]
  378. Sivandzade F, Prasad S, Bhalerao A, Cucullo L (2019) NRF2 and NF-қB interplay in cerebrovascular and neurodegenerative disorders: molecular mechanisms and possible therapeutic approaches. Redox Biol 21:101059. https://doi.org/10.1016/j.redox.2018.11.017 [DOI: 10.1016/j.redox.2018.11.017]
  379. Santofimia-Castaño P, Clea Ruy D, Garcia-Sanchez L, Jimenez-Blasco D, Fernandez-Bermejo M, Bolaños JP, Salido GM, Gonzalez A (2015) Melatonin induces the expression of Nrf2-regulated antioxidant enzymes via PKC and Ca2+ influx activation in mouse pancreatic acinar cells. Free Radic Biol Med 87:226–236. https://doi.org/10.1016/j.freeradbiomed.2015.06.033 [DOI: 10.1016/j.freeradbiomed.2015.06.033]
  380. Sadek KM, Lebda MA, Abouzed TK (2019) The possible neuroprotective effects of melatonin in aluminum chloride-induced neurotoxicity via antioxidant pathway and Nrf2 signaling apart from metal chelation. Environ Sci Pollut Res Int 26(9):9174–9183. https://doi.org/10.1007/s11356-019-04430-9 [DOI: 10.1007/s11356-019-04430-9]

MeSH Term

Animals
Brain
Humans
Mental Disorders
Mitochondria
NF-E2-Related Factor 2
Neuropsychiatry

Chemicals

NF-E2-Related Factor 2
NFE2L2 protein, human

Word Cloud

Created with Highcharts 10.0.0mitochondrialNrf2stressoxidativefactorassociatedincreasedglutathioneN-acetylcysteinetranscriptionDNAupregulationcellularlevelsthioredoxinresponsedisordernitrosativenitricoxidelipidperoxidationproteinQneuroinflammationCoenzymeamelioratesmembraneactivatesMelatoninNuclearerythroid2-related2encodedNFE2L2undergonormalcytoplasmicdegradationinsteadtravelsnucleusbindspromoterinitiatesanti-oxidativegenesdisulfideperoxidasetransferasesreductaseGivenkeyrolegoverningantioxidantsuggestedcommontherapeutictargetneuropsychiatricillnessesmajordepressivebipolarschizophreniachroniccharacterisedelevatedreactiveoxygenspeciesperoxynitriteprocessesleadextensiveoxidationcarbonylationdamagenuclearIntakecoenzymemelatoninaccompaniedactivityintakeimprovedcerebralfunctiondecreasedcentralreducedalleviationendoplasmicreticularsuppressionunfoldedactssuperoxidescavengerneuroglialmitochondriainstigatesmitohormesisinneruncouplingproteinspromotesbiogenesispositiveeffectsplasmaredoxsystemscavengesfreeradicalsinhibitssynthaserestorescalciumhomeostasisdeacetylatesSIRT3permeabilityblood-brainbarrierintestinecountersglutamateexcitotoxicityIncreasingActivityTreatmentApproachNeuropsychiatryQ10MolecularneurobiologyOxidative

Similar Articles

Cited By