Neural Correlates of Cognitive Dysfunctions in Cervical Spondylotic Myelopathy Patients: A Resting-State fMRI Study.

Rui Zhao, Qian Su, Zhao Chen, Haoran Sun, Meng Liang, Yuan Xue
Author Information
  1. Rui Zhao: Department of Orthopedics Surgery, Tianjin Medical University General Hospital, Tianjin, China.
  2. Qian Su: Department of Molecular Imaging and Nuclear Medicine, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for China, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.
  3. Zhao Chen: Department of Orthopedics Surgery, Tianjin Medical University General Hospital, Tianjin, China.
  4. Haoran Sun: Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China.
  5. Meng Liang: School of Medical Imaging, Tianjin Medical University, Tianjin, China.
  6. Yuan Xue: Department of Orthopedics Surgery, Tianjin Medical University General Hospital, Tianjin, China.

Abstract

Cervical spondylotic myelopathy (CSM) is a common disease of the elderly that is characterized by gait instability, sensorimotor deficits, etc. Recurrent symptoms including memory loss, poor attention, etc. have also been reported in recent studies. However, these have been rarely investigated in CSM patients. To investigate the cognitive deficits and their correlation with brain functional alterations, we conducted resting-state fMRI (rs-fMRI) signal variability. This is a novel indicator in the neuroimaging field for assessing the regional neural activity in CSM patients. Further, to explore the network changes in patients, functional connectivity (FC) and graph theory analyses were performed. Compared with the controls, the signal variabilities were significantly lower in the widespread brain regions especially at the default mode network (DMN), visual network, and somatosensory network. The altered inferior parietal lobule signal variability positively correlated with the cognitive function level. Moreover, the FC and the global efficiency of DMN increased in patients with CSM and positively correlated with the cognitive function level. According to the study results, (1) the cervical spondylotic myelopathy patients exhibited regional neural impairments, which correlated with the severity of cognitive deficits in the DMN brain regions, and (2) the increased FC and global efficiency of DMN can compensate for the regional impairment.

Keywords

References

  1. Radiology. 2017 Mar;282(3):817-825 [PMID: 27689923]
  2. Pain. 2016 Nov;157(11):2483-2492 [PMID: 27429176]
  3. Eur Spine J. 2015 Apr;24 Suppl 2:139-41 [PMID: 23616201]
  4. Front Neuroanat. 2015 Nov 26;9:152 [PMID: 26635544]
  5. Front Aging Neurosci. 2017 Aug 07;9:264 [PMID: 28824423]
  6. Neurosurg Focus. 2016 Jun;40(6):E2 [PMID: 27246485]
  7. Spine (Phila Pa 1976). 2020 Mar 1;45(5):E272-E279 [PMID: 31513096]
  8. J Glaucoma. 2017 Feb;26(2):173-181 [PMID: 27661989]
  9. PLoS One. 2011;6(7):e21976 [PMID: 21818285]
  10. J Neurosci. 2011 Feb 16;31(7):2630-7 [PMID: 21325531]
  11. Psychol Rev. 1966 May;73(3):242-7 [PMID: 5325897]
  12. Cortex. 2016 Oct;83:51-61 [PMID: 27479615]
  13. Neurosci Biobehav Rev. 2013 May;37(4):610-24 [PMID: 23458776]
  14. Magn Reson Imaging. 2019 Dec;64:101-121 [PMID: 31173849]
  15. Neuropsychiatr Dis Treat. 2019 Aug 21;15:2371-2383 [PMID: 31686821]
  16. Sci Rep. 2019 Jul 18;9(1):10456 [PMID: 31320690]
  17. J Cogn Neurosci. 2014 Jan;26(1):189-209 [PMID: 24001005]
  18. Trends Cogn Sci. 2016 Jun;20(6):425-443 [PMID: 27138646]
  19. Nat Rev Neurosci. 2005 May;6(5):389-97 [PMID: 15861181]
  20. Neuroscientist. 2013 Aug;19(4):409-21 [PMID: 23204243]
  21. Biomed Res Int. 2015;2015:647958 [PMID: 26605335]
  22. Dev Cogn Neurosci. 2019 Apr;36:100630 [PMID: 30878549]
  23. Hum Brain Mapp. 2007 Dec;28(12):1334-46 [PMID: 17315225]
  24. J Magn Reson Imaging. 2006 Jun;23(6):862-76 [PMID: 16649197]
  25. Cereb Cortex. 2009 Jan;19(1):224-32 [PMID: 18483004]
  26. Brain Cogn. 2006 Apr;60(3):220-32 [PMID: 16427175]
  27. Science. 2010 Sep 10;329(5997):1358-61 [PMID: 20829489]
  28. Sci Rep. 2020 Apr 15;10(1):6457 [PMID: 32296093]
  29. J Neurosurg Spine. 2008 Dec;9(6):538-51 [PMID: 19035745]
  30. Brain Struct Funct. 2017 Nov;222(8):3795-3805 [PMID: 28470553]
  31. Front Aging Neurosci. 2018 Feb 21;10:39 [PMID: 29515434]
  32. J Neurosurg Spine. 2018 Apr;28(4):379-388 [PMID: 29350595]
  33. Neuropsychol Rev. 2014 Mar;24(1):49-62 [PMID: 24562737]
  34. Cell Rep. 2019 Nov 19;29(8):2398-2407.e4 [PMID: 31747608]
  35. Neuroimage. 2020 Feb 15;207:116373 [PMID: 31759114]
  36. Neurosurgery. 2005 Aug;57(2):307-13; discussion 307-13 [PMID: 16094160]
  37. Neuroscientist. 2017 Oct;23(5):499-516 [PMID: 27655008]
  38. Neurol Sci. 2014 Sep;35(9):1373-9 [PMID: 24643580]
  39. Neuroimage. 2017 May 15;152:437-449 [PMID: 28167349]
  40. Front Hum Neurosci. 2015 Jun 30;9:386 [PMID: 26175682]
  41. Nat Rev Neurosci. 2008 Apr;9(4):292-303 [PMID: 18319728]
  42. BMC Neurosci. 2012 Jul 16;13:81 [PMID: 22800430]
  43. Neurol Med Chir (Tokyo). 2010;50(7):554-9 [PMID: 20671380]
  44. Yale J Biol Med. 2016 Mar 24;89(1):49-57 [PMID: 27505016]
  45. J Am Acad Orthop Surg. 2015 Nov;23(11):648-60 [PMID: 26498584]
  46. Neuroimage. 2018 Apr 1;169:510-523 [PMID: 29253658]
  47. PLoS One. 2015 Jun 08;10(6):e0125913 [PMID: 26053316]
  48. Neuroreport. 2009 Jul 1;20(10):968-72 [PMID: 19525878]
  49. Neuroimage. 2017 Apr 1;149:85-97 [PMID: 28143774]
  50. Front Neurosci. 2018 Jul 31;12:516 [PMID: 30108478]
  51. Clin Orthop Relat Res. 2020 Jul;478(7):1667-1680 [PMID: 32011371]
  52. World Neurosurg. 2018 Nov;119:e740-e749 [PMID: 30092474]
  53. J Int Neuropsychol Soc. 2016 Feb;22(2):205-15 [PMID: 26888617]
  54. Annu Rev Neurosci. 2015 Jul 8;38:433-47 [PMID: 25938726]
  55. J Neurosci. 2016 Apr 6;36(14):3978-87 [PMID: 27053205]
  56. Neuroradiology. 2018 Sep;60(9):921-932 [PMID: 30066277]
  57. J Alzheimers Dis. 2018;66(3):1223-1234 [PMID: 30412488]
  58. PLoS One. 2015 Apr 07;10(4):e0123354 [PMID: 25848951]
  59. Sci Rep. 2017 Aug 31;7(1):10149 [PMID: 28860455]
  60. Eur Spine J. 2015 Apr;24 Suppl 2:132-8 [PMID: 24626958]
  61. Neuroimage. 2002 Oct;17(2):825-41 [PMID: 12377157]
  62. J Neural Eng. 2018 Jun;15(3):035005 [PMID: 29199636]
  63. Front Aging Neurosci. 2019 Mar 12;11:46 [PMID: 30914944]
  64. Prog Neuropsychopharmacol Biol Psychiatry. 2018 Aug 30;86:114-121 [PMID: 29807061]
  65. Neuron. 2011 Nov 17;72(4):665-78 [PMID: 22099467]
  66. Clin Spine Surg. 2016 Dec;29(10):408-414 [PMID: 27352369]
  67. eNeuro. 2020 May 20;7(3): [PMID: 32193364]
  68. Quant Imaging Med Surg. 2020 May;10(5):1174-1178 [PMID: 32489942]
  69. Neuroreport. 2020 Mar 25;31(5):365-371 [PMID: 31609830]
  70. Cereb Cortex. 2016 May;26(5):2074-2083 [PMID: 25750252]
  71. Hum Brain Mapp. 2013 Oct;34(10):2455-63 [PMID: 22461380]
  72. Brain Imaging Behav. 2014 Jun;8(2):274-83 [PMID: 24008589]
  73. J Neurosci. 2017 May 31;37(22):5539-5548 [PMID: 28473644]
  74. Hum Brain Mapp. 2013 Oct;34(10):2655-68 [PMID: 22706963]
  75. Top Spinal Cord Inj Rehabil. 2012 Spring;18(2):106-12 [PMID: 23459246]
  76. Neuroimage. 2012 Jan 2;59(1):431-8 [PMID: 21810475]
  77. Brain Connect. 2019 Sep;9(7):554-565 [PMID: 31131605]
  78. Neuroimage. 2012 Feb 1;59(3):2142-54 [PMID: 22019881]
  79. Front Neurosci. 2012 Apr 09;6:45 [PMID: 22509147]
  80. J Affect Disord. 2016 Nov 15;205:130-137 [PMID: 27434117]
  81. Mov Disord. 2015 Aug;30(9):1237-47 [PMID: 26094856]
  82. J Neurosci. 2014 Sep 10;34(37):12341-52 [PMID: 25209275]
  83. Clin Neurophysiol. 2017 Nov;128(11):2258-2267 [PMID: 29028500]
  84. Front Psychiatry. 2014 Jul 15;5:81 [PMID: 25076915]
  85. Eur Radiol. 2015 Nov;25(11):3238-46 [PMID: 25903712]

Word Cloud

Created with Highcharts 10.0.0patientscognitivenetworkCSMdeficitsDMNspondyloticmyelopathybrainfMRIsignalvariabilityregionalFCcorrelatedCervicaletcfunctionalresting-stateneuralregionsdefaultmodepositivelyfunctionlevelglobalefficiencyincreasedcervicalcommondiseaseelderlycharacterizedgaitinstabilitysensorimotorRecurrentsymptomsincludingmemorylosspoorattentionalsoreportedrecentstudiesHoweverrarelyinvestigatedinvestigatecorrelationalterationsconductedrs-fMRInovelindicatorneuroimagingfieldassessingactivityexplorechangesconnectivitygraphtheoryanalysesperformedComparedcontrolsvariabilitiessignificantlylowerwidespreadespeciallyvisualsomatosensoryalteredinferiorparietallobuleMoreoverAccordingstudyresults1exhibitedimpairmentsseverity2cancompensateimpairmentNeuralCorrelatesCognitiveDysfunctionsSpondyloticMyelopathyPatients:Resting-StateStudyBOLD

Similar Articles

Cited By