Immobilization of Soybean Lipoxygenase on Nanoporous Rice Husk Silica by Adsorption: Retention of Enzyme Function and Catalytic Potential.

Putheary Ngin, Kyoungwon Cho, Oksoo Han
Author Information
  1. Putheary Ngin: Department of Molecular Biotechnology and Kumho Life Science Laboratory, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757, Korea.
  2. Kyoungwon Cho: Department of Molecular Biotechnology and Kumho Life Science Laboratory, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757, Korea. ORCID
  3. Oksoo Han: Department of Molecular Biotechnology and Kumho Life Science Laboratory, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757, Korea. ORCID

Abstract

Soybean lipoxygenase was immobilized on nanoporous rice husk silica particles by adsorption, and enzymatic parameters of the immobilized protein, including the efficiency of substrate binding and catalysis, kinetic and operational stability, and the kinetics of thermal inactivation, were investigated. The maximal adsorption efficiency of soybean lipoxygenase to the silica particles was 50%. The desorption kinetics of soybean lipoxygenase from the silica particles indicate that the silica-immobilized enzyme is more stable in an anionic buffer (sodium phosphate, pH 7.2) than in a cationic buffer (Tris-HCl, pH 7.2). The specific activity of immobilized lipoxygenase was 73% of the specific activity of soluble soybean lipoxygenase at a high concentration of substrate. The catalytic efficiency (k/K) and the Michaelis-Menten constant (K) of immobilized lipoxygenase were 21% and 49% of k/K and K of soluble soybean lipoxygenase, respectively, at a low concentration of substrate. The immobilized soybean lipoxygenase was relatively stable, as the enzyme specific activity was >90% of the initial activity after four assay cycles. The thermal stability of the immobilized lipoxygenase was higher than the thermal stability of soluble lipoxygenase, demonstrating 70% and 45% of its optimal specific activity, respectively, after incubation for 30 min at 45 °C. These results demonstrate that adsorption on nanoporous rice husk silica is a simple and rapid method for protein immobilization, and that adsorption may be a useful and facile method for the immobilization of many biologically important proteins of interest.

Keywords

References

  1. Bioorg Chem. 2018 Aug;78:170-177 [PMID: 29573638]
  2. Nanomaterials (Basel). 2020 Jan 05;10(1): [PMID: 31948120]
  3. J Biochem Mol Biol. 2007 Jan 31;40(1):100-6 [PMID: 17244489]
  4. Bioorg Khim. 2002 Jan-Feb;28(1):50-5 [PMID: 11875974]
  5. Eur J Biochem. 1968 Apr 3;4(2):201-8 [PMID: 5690304]
  6. Proc Natl Acad Sci U S A. 1993 Aug 15;90(16):7490-4 [PMID: 11607420]
  7. Plant Sci. 2011 Sep;181(3):242-8 [PMID: 21763534]
  8. Plant J. 2002 Nov;32(4):585-601 [PMID: 12445129]
  9. Lipids. 1991 Oct;26(10):853-6 [PMID: 1795606]
  10. J Exp Bot. 2017 Mar 1;68(6):1303-1321 [PMID: 27940470]
  11. Plant Cell. 1999 Nov;11(11):2249-60 [PMID: 10559447]
  12. Anticancer Drugs. 2008 Sep;19(8):766-76 [PMID: 18690087]
  13. Appl Biochem Biotechnol. 2005 Oct;127(1):29-42 [PMID: 16186621]
  14. J Nanosci Nanotechnol. 2010 May;10(5):3705-8 [PMID: 20359032]
  15. J Biol Chem. 1994 Dec 16;269(50):31585-91 [PMID: 7989328]
  16. Eur J Biochem. 1997 Apr 15;245(2):294-9 [PMID: 9151956]
  17. Appl Biochem Biotechnol. 1998 Feb;69(2):79-90 [PMID: 18574729]
  18. Anal Chem. 2006 Jan 1;78(1):331-6 [PMID: 16383345]
  19. Prostaglandins Other Lipid Mediat. 2002 Aug;68-69:423-31 [PMID: 12432934]
  20. Biochem Biophys Res Commun. 1970 Oct 23;41(2):427-34 [PMID: 5518172]
  21. Plant Physiol. 1996 Jul;111(3):797-803 [PMID: 12226331]
  22. PLoS One. 2012;7(10):e47154 [PMID: 23071741]
  23. Plant Mol Biol. 2003 Apr;51(6):895-911 [PMID: 12777050]
  24. Biosci Biotechnol Biochem. 1993 Jan;57(2):283-7 [PMID: 27314783]
  25. Adv Appl Microbiol. 1983;29:1-28 [PMID: 6650260]
  26. Biotechnol Prog. 2005 Mar-Apr;21(2):516-23 [PMID: 15801792]
  27. Mater Sci Eng C Mater Biol Appl. 2016 Feb;59:35-42 [PMID: 26652346]
  28. Phytochemistry. 2009 Sep;70(13-14):1600-9 [PMID: 19660769]
  29. Plant Physiol. 2001 Jan;125(1):306-17 [PMID: 11154338]
  30. Plant Physiol. 1984 Jun;75(2):458-61 [PMID: 16663643]
  31. Proc Natl Acad Sci U S A. 2014 Nov 18;111(46):16592-7 [PMID: 25349401]
  32. Biotechnol Prog. 1997 Jul-Aug;13(4):394-8 [PMID: 9265777]
  33. Arch Biochem Biophys. 1969 Apr;131(1):185-90 [PMID: 5813833]
  34. Artif Cells Nanomed Biotechnol. 2018 Dec;46(8):1523-1529 [PMID: 28889752]
  35. Trends Cell Biol. 1992 Aug;2(8):236-41 [PMID: 14731481]
  36. Int J Mol Sci. 2010 Apr 12;11(4):1546-56 [PMID: 20480034]
  37. Planta. 1983 Nov;159(3):238-46 [PMID: 24258174]
  38. Biochemistry. 1999 Oct 19;38(42):13920-7 [PMID: 10529238]
  39. Mater Sci Eng C Mater Biol Appl. 2019 Jun;99:900-904 [PMID: 30889764]
  40. Bioorg Chem. 2019 Oct;91:103146 [PMID: 31377389]
  41. J Chem Ecol. 1993 Oct;19(10):2337-45 [PMID: 24248580]
  42. Front Chem. 2018 Oct 30;6:500 [PMID: 30425978]
  43. J Nanosci Nanotechnol. 2011 Feb;11(2):1305-9 [PMID: 21456176]

Grants

  1. NRF-2015R1D1A1A01058366/National Research Foundation of Korea

MeSH Term

Catalysis
Enzymes, Immobilized
Lipoxygenase
Oryza
Silicon Dioxide
Soybean Proteins
Glycine max

Chemicals

Enzymes, Immobilized
Soybean Proteins
Silicon Dioxide
Lipoxygenase

Word Cloud

Created with Highcharts 10.0.0lipoxygenaseimmobilizedsilicaadsorptionsoybeanactivityefficiencyspecificricehuskparticlessubstratestabilitythermalsolubleimmobilizationSoybeannanoporousproteinkineticsenzymestablebufferpH72concentrationcatalytick/KKrespectivelymethodenzymaticparametersincludingbindingcatalysiskineticoperationalinactivationinvestigatedmaximal50%desorptionindicatesilica-immobilizedanionicsodiumphosphatecationicTris-HCl73%highMichaelis-Mentenconstant21%49%lowrelatively>90%initialfourassaycycleshigherdemonstrating70%45%optimalincubation30min45°CresultsdemonstratesimplerapidmayusefulfacilemanybiologicallyimportantproteinsinterestImmobilizationLipoxygenaseNanoporousRiceHuskSilicaAdsorption:RetentionEnzymeFunctionCatalyticPotentialjasmonicacidmatrixoctadecanoidpathwayoxylipinbiosynthesisplantdefense

Similar Articles

Cited By