Pseudomonas aeruginosa OprF plays a role in resistance to macrophage clearance during acute infection.

Malika Moussouni, Laurence Berry, Tamara Sipka, Mai Nguyen-Chi, Anne-Béatrice Blanc-Potard
Author Information
  1. Malika Moussouni: Laboratory of Pathogen-Host Interactions (LPHI), CNRS-UMR5235, Université de Montpellier, Montpellier, France.
  2. Laurence Berry: Laboratory of Pathogen-Host Interactions (LPHI), CNRS-UMR5235, Université de Montpellier, Montpellier, France.
  3. Tamara Sipka: Laboratory of Pathogen-Host Interactions (LPHI), CNRS-UMR5235, Université de Montpellier, Montpellier, France.
  4. Mai Nguyen-Chi: Laboratory of Pathogen-Host Interactions (LPHI), CNRS-UMR5235, Université de Montpellier, Montpellier, France.
  5. Anne-Béatrice Blanc-Potard: Laboratory of Pathogen-Host Interactions (LPHI), CNRS-UMR5235, Université de Montpellier, Montpellier, France. anne.blanc-potard@umontpellier.fr.

Abstract

While considered an extracellular pathogen, Pseudomonas aeruginosa has been reported to be engulfed by macrophages in cellular and animal models. However, the role of macrophages in P. aeruginosa clearance in vivo remains poorly studied. The major outer membrane porin OprF has been recently shown to be involved in P. aeruginosa fate within cultured macrophages and analysis of an oprF mutant may thus provide insights to better understand the relevance of this intramacrophage stage during infection. In the present study, we investigated for the first time the virulence of a P. aeruginosa oprF mutant in a vertebrate model that harbors functional macrophages, the zebrafish (Danio rerio) embryo, which offers powerful tools to address macrophage-pathogen interactions. We established that P. aeruginosa oprF mutant is attenuated in zebrafish embryos in a macrophage-dependent manner. Visualization and quantification of P. aeruginosa bacteria phagocytosed by macrophages after injection into closed cavities suggested that the attenuated phenotype of oprF mutant is not linked to higher macrophage recruitment nor better phagocytosis than wild-type strain. Using cultured macrophages, we showed an intramacrophage survival defect of P. aeruginosa oprF mutant, which is correlated with elevated association of bacteria with acidic compartments. Notably, treatment of embryos with bafilomycin, an inhibitor of acidification, increased the sensibility of embryos towards both wild-type and oprF mutant, and partially suppressed the attenuation of oprF mutant. Taken together, this work supports zebrafish embryo as state-of-the-art model to address in vivo the relevance of P. aeruginosa intramacrophage stage. Our results highlight the contribution of macrophages in the clearance of P. aeruginosa during acute infection and suggest that OprF protects P. aeruginosa against macrophage clearance by avoiding bacterial elimination in acidified phagosomes.

References

  1. Cell Host Microbe. 2016 Aug 10;20(2):250-8 [PMID: 27512905]
  2. Infect Immun. 2015 Aug;83(8):3006-14 [PMID: 25964476]
  3. Infect Immun. 2011 Mar;79(3):1176-86 [PMID: 21189321]
  4. Infect Immun. 2020 Jun 22;88(7): [PMID: 32179583]
  5. mBio. 2018 May 1;9(3): [PMID: 29717012]
  6. Microb Cell. 2015 Aug 13;2(9):353-355 [PMID: 28357311]
  7. PLoS One. 2013 Sep 18;8(9):e73111 [PMID: 24058462]
  8. PLoS Pathog. 2015 Jun 16;11(6):e1004969 [PMID: 26080006]
  9. Sci Rep. 2019 Feb 6;9(1):1527 [PMID: 30728389]
  10. Trends Cell Biol. 2018 Feb;28(2):143-156 [PMID: 29173800]
  11. Trends Microbiol. 2020 Jan;28(1):10-18 [PMID: 31604611]
  12. Infect Immun. 1998 Jul;66(7):3164-9 [PMID: 9632581]
  13. Infect Immun. 2008 May;76(5):1992-2001 [PMID: 18316391]
  14. Cell Microbiol. 2009 May;11(5):755-68 [PMID: 19207728]
  15. Front Microbiol. 2016 Nov 18;7:1828 [PMID: 27917157]
  16. Front Microbiol. 2015 Jun 23;6:630 [PMID: 26157434]
  17. Front Microbiol. 2015 Feb 04;6:38 [PMID: 25699030]
  18. J Cell Sci. 2011 Sep 15;124(Pt 18):3053-9 [PMID: 21868367]
  19. Curr Top Dev Biol. 2017;124:277-329 [PMID: 28335862]
  20. Cell Microbiol. 2001 Feb;3(2):85-98 [PMID: 11207623]
  21. Proc Natl Acad Sci U S A. 2014 Mar 11;111(10):E943-52 [PMID: 24567393]
  22. FEMS Microbiol Rev. 2017 Sep 1;41(5):698-722 [PMID: 28981745]
  23. Front Immunol. 2017 Dec 01;8:1703 [PMID: 29250076]
  24. J Bacteriol. 2019 Apr 22;201(18): [PMID: 31010902]
  25. Antimicrob Agents Chemother. 2013 May;57(5):2310-8 [PMID: 23478951]
  26. PLoS Pathog. 2018 Jul 17;14(7):e1007157 [PMID: 30016370]
  27. PLoS One. 2014 Mar 14;9(3):e91885 [PMID: 24632826]
  28. Proc Natl Acad Sci U S A. 1988 Nov;85(21):7972-6 [PMID: 2973058]
  29. Infect Immun. 2009 Apr;77(4):1293-303 [PMID: 19168742]
  30. PLoS Pathog. 2019 Jun 20;15(6):e1007812 [PMID: 31220187]
  31. Front Cell Infect Microbiol. 2018 Nov 22;8:406 [PMID: 30524971]
  32. Dis Model Mech. 2014 Jul;7(7):785-97 [PMID: 24973749]
  33. J Proteome Res. 2015 Oct 2;14(10):4207-22 [PMID: 26303878]
  34. J Bacteriol. 2001 Feb;183(3):1047-57 [PMID: 11208804]
  35. Infect Immun. 2000 Aug;68(8):4585-92 [PMID: 10899859]
  36. J Bacteriol. 2013 Jan;195(2):213-9 [PMID: 23123904]
  37. Rev Physiol Biochem Pharmacol. 2004;152:79-92 [PMID: 15375697]
  38. J Immunol Methods. 1996 Jun 14;193(1):93-9 [PMID: 8690935]

MeSH Term

Animals
Bacterial Proteins
Gene Expression Regulation, Bacterial
Macrophages
Pseudomonas aeruginosa
Zebrafish

Chemicals

Bacterial Proteins
OprF protein, Pseudomonas aeruginosa

Word Cloud

Created with Highcharts 10.0.0aeruginosaPmacrophagesoprFmutantclearanceOprFintramacrophageinfectionzebrafishembryosmacrophagePseudomonasrolevivoculturedbetterrelevancestagemodelembryoaddressattenuatedbacteriawild-typeacuteconsideredextracellularpathogenreportedengulfedcellularanimalmodelsHoweverremainspoorlystudiedmajoroutermembraneporinrecentlyshowninvolvedfatewithinanalysismaythusprovideinsightsunderstandpresentstudyinvestigatedfirsttimevirulencevertebrateharborsfunctionalDaniorerioofferspowerfultoolsmacrophage-pathogeninteractionsestablishedmacrophage-dependentmannerVisualizationquantificationphagocytosedinjectionclosedcavitiessuggestedphenotypelinkedhigherrecruitmentphagocytosisstrainUsingshowedsurvivaldefectcorrelatedelevatedassociationacidiccompartmentsNotablytreatmentbafilomycininhibitoracidificationincreasedsensibilitytowardspartiallysuppressedattenuationTakentogetherworksupportsstate-of-the-artresultshighlightcontributionsuggestprotectsavoidingbacterialeliminationacidifiedphagosomesplaysresistance

Similar Articles

Cited By