Ethanol exposure drives colon location specific cell composition changes in a normal colon crypt 3D organoid model.

Matthew Devall, Sarah J Plummer, Jennifer Bryant, Lucas T Jennelle, Stephen Eaton, Christopher H Dampier, Jeroen R Huyghe, Ulrike Peters, Steven M Powell, Graham Casey
Author Information
  1. Matthew Devall: Department of Public Health Sciences, Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA.
  2. Sarah J Plummer: Department of Public Health Sciences, Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA.
  3. Jennifer Bryant: Department of Public Health Sciences, Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA.
  4. Lucas T Jennelle: Department of Public Health Sciences, Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA.
  5. Stephen Eaton: Department of Public Health Sciences, Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA.
  6. Christopher H Dampier: Department of Public Health Sciences, Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA.
  7. Jeroen R Huyghe: Public Health Sciences Division, Fred Hutchinson Cancer Center Research Institute, Seattle, WA, USA.
  8. Ulrike Peters: Public Health Sciences Division, Fred Hutchinson Cancer Center Research Institute, Seattle, WA, USA.
  9. Steven M Powell: Digestive Health Center, University of Virginia, Charlottesville, VA, USA.
  10. Graham Casey: Department of Public Health Sciences, Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA. gc8r@virginia.edu.

Abstract

Alcohol is a consistently identified risk factor for colon cancer. However, the molecular mechanism underlying its effect on normal colon crypt cells remains poorly understood. We employed RNA-sequencing to asses transcriptomic response to ethanol exposure (0.2% vol:vol) in 3D organoid lines derived from healthy colon (n = 34). Paired regression analysis identified 2,162 differentially expressed genes in response to ethanol. When stratified by colon location, a far greater number of differentially expressed genes were identified in organoids derived from the left versus right colon, many of which corresponded to cell-type specific markers. To test the hypothesis that the effects of ethanol treatment on colon organoid populations were in part due to differential cell composition, we incorporated external single cell RNA-sequencing data from normal colon biopsies to estimate cellular proportions following single cell deconvolution. We inferred cell-type-specific changes, and observed an increase in transit amplifying cells following ethanol exposure that was greater in organoids from the left than right colon, with a concomitant decrease in more differentiated cells. If this occurs in the colon following alcohol consumption, this would lead to an increased zone of cells in the lower crypt where conditions are optimal for cell division and the potential to develop mutations.

References

  1. Int J Cancer. 2007 Nov 1;121(9):2065-72 [PMID: 17640039]
  2. Antioxid Redox Signal. 2018 Apr 10;28(11):1090-1101 [PMID: 28657337]
  3. J Neurosci. 2005 Sep 21;25(38):8627-36 [PMID: 16177030]
  4. Alcohol Clin Exp Res. 2015 Sep;39(9):1632-41 [PMID: 26207424]
  5. Alcohol Clin Exp Res. 2011 Jul;35(7):1305-14 [PMID: 21463335]
  6. Nucleic Acids Res. 2019 Jan 8;47(D1):D948-D954 [PMID: 30247620]
  7. F1000Res. 2015 Dec 30;4:1521 [PMID: 26925227]
  8. Nature. 2018 Jan 11;553(7687):171-177 [PMID: 29323295]
  9. J Pathol. 2017 Apr;241(5):649-660 [PMID: 28026023]
  10. Ann Oncol. 2011 Sep;22(9):1958-1972 [PMID: 21307158]
  11. Nat Commun. 2020 Feb 19;11(1):955 [PMID: 32075962]
  12. Nat Biotechnol. 2019 Jul;37(7):773-782 [PMID: 31061481]
  13. BMC Cancer. 2014 May 28;14:377 [PMID: 24886599]
  14. Oncol Lett. 2019 Mar;17(3):3048-3054 [PMID: 30867733]
  15. Cancers (Basel). 2018 Jan 30;10(2): [PMID: 29385712]
  16. BMC Med Genomics. 2013 Jul 25;6:26 [PMID: 23883607]
  17. J Hepatol. 2018 Oct;69(4):886-895 [PMID: 29803899]
  18. Stem Cell Res Ther. 2019 Jul 29;10(1):219 [PMID: 31358061]
  19. Gut. 2001 Sep;49(3):418-22 [PMID: 11511565]
  20. Dig Surg. 2013;30(4-6):383-92 [PMID: 24135859]
  21. Gastroenterology. 2011 Nov;141(5):1762-72 [PMID: 21889923]
  22. Genome Biol. 2014;15(12):550 [PMID: 25516281]
  23. Sci Rep. 2017 Mar 27;7:45270 [PMID: 28345602]
  24. Mol Cell Biol. 2009 Oct;29(19):5306-15 [PMID: 19635809]
  25. Cell. 2002 Oct 18;111(2):241-50 [PMID: 12408868]
  26. Nat Commun. 2019 May 14;10(1):2154 [PMID: 31089142]
  27. Alcohol Clin Exp Res. 2017 Apr;41(4):727-734 [PMID: 28195397]
  28. Nucleic Acids Res. 2015 Apr 20;43(7):e47 [PMID: 25605792]
  29. Nat Biotechnol. 2018 Jun;36(5):411-420 [PMID: 29608179]
  30. Oncogene. 2008 Jan 3;27(1):44-54 [PMID: 17621274]
  31. Gastroenterology. 2019 Apr;156(5):1455-1466 [PMID: 30529582]
  32. Nat Commun. 2013;4:1898 [PMID: 23695692]
  33. Nat Genet. 2019 Jan;51(1):76-87 [PMID: 30510241]
  34. Breast Cancer Res Treat. 2012 Jun;133(3):1037-48 [PMID: 22160640]
  35. Alcohol Clin Exp Res. 2010 Jan;34(1):19-31 [PMID: 19860811]
  36. Bioinformatics. 2013 Jan 1;29(1):15-21 [PMID: 23104886]
  37. Nucleic Acids Res. 2016 May 5;44(8):e71 [PMID: 26704973]
  38. Cell. 2019 Feb 21;176(5):1158-1173.e16 [PMID: 30712869]
  39. Nat Genet. 2013 Oct;45(10):1113-20 [PMID: 24071849]
  40. Gut Microbes. 2018 Jul 4;9(4):338-356 [PMID: 29517944]
  41. Cell. 2019 Jul 25;178(3):714-730.e22 [PMID: 31348891]
  42. Nat Genet. 2012 May 27;44(7):770-6 [PMID: 22634755]
  43. Cell Mol Life Sci. 2019 Jan;76(2):231-244 [PMID: 30306211]
  44. PLoS One. 2015 Jul 31;10(7):e0134406 [PMID: 26230583]
  45. Arch Intern Med. 2006 Mar 27;166(6):629-34 [PMID: 16567601]
  46. Curr Opin Cell Biol. 2018 Apr;51:15-21 [PMID: 29153702]
  47. Eur J Cancer. 2007 Jan;43(2):383-90 [PMID: 17150353]
  48. Alcohol Clin Exp Res. 2011 Apr;35(4):735-46 [PMID: 21223309]
  49. Mol Carcinog. 2016 May;55(5):1002-11 [PMID: 26014148]
  50. Cell. 2018 Dec 13;175(7):1972-1988.e16 [PMID: 30550791]
  51. Biomed Pharmacother. 2019 Feb;110:473-481 [PMID: 30530050]
  52. Mol Med Rep. 2012 Apr;5(4):1027-32 [PMID: 22246134]
  53. PLoS One. 2020 Jan 17;15(1):e0227116 [PMID: 31951625]
  54. Cell. 2018 Apr 5;173(2):338-354.e15 [PMID: 29625051]
  55. Dis Colon Rectum. 1978 Jul-Aug;21(5):329-35 [PMID: 699722]
  56. Pharmacogenomics J. 2015 Aug;15(4):354-62 [PMID: 25532759]
  57. Nucleic Acids Res. 2009 Jul;37(Web Server issue):W305-11 [PMID: 19465376]
  58. J Neurochem. 2010 Sep;114(6):1767-80 [PMID: 20626555]

Grants

  1. R01 CA143237/NCI NIH HHS
  2. R01 CA201407/NCI NIH HHS

MeSH Term

Biopsy
Cells, Cultured
Colon
Ethanol
Humans
Intestinal Mucosa
Models, Biological
Organ Specificity
Organoids
Tissue Scaffolds

Chemicals

Ethanol

Word Cloud

Created with Highcharts 10.0.0coloncellcellsethanolidentifiednormalcryptexposureorganoidfollowingRNA-sequencingresponse3DderiveddifferentiallyexpressedgeneslocationgreaterorganoidsleftrightspecificcompositionsinglechangesAlcoholconsistentlyriskfactorcancerHowevermolecularmechanismunderlyingeffectremainspoorlyunderstoodemployedassestranscriptomic02%vol:vollineshealthyn = 34Pairedregressionanalysis2162stratifiedfarnumberversusmanycorrespondedcell-typemarkerstesthypothesiseffectstreatmentpopulationspartduedifferentialincorporatedexternaldatabiopsiesestimatecellularproportionsdeconvolutioninferredcell-type-specificobservedincreasetransitamplifyingconcomitantdecreasedifferentiatedoccursalcoholconsumptionleadincreasedzonelowerconditionsoptimaldivisionpotentialdevelopmutationsEthanoldrivesmodel

Similar Articles

Cited By