Nestling odour modulates behavioural response in male, but not in female zebra finches.

Sarah Golüke, Hans-Joachim Bischof, Barbara A Caspers
Author Information
  1. Sarah Golüke: Department of Behavioural Ecology, Bielefeld University, Bielefeld, Germany.
  2. Hans-Joachim Bischof: Department of Animal Behaviour, Bielefeld University, Bielefeld, Germany.
  3. Barbara A Caspers: Department of Behavioural Ecology, Bielefeld University, Bielefeld, Germany. barbara.caspers@uni-bielefeld.de.

Abstract

Studies investigating parent offspring recognition in birds led to the conclusion that offspring recognition is absent at the early nestling stage. Especially male songbirds were often assumed to be unable to discriminate between own and foreign offspring. However, olfactory offspring recognition in birds has not been taken into account as yet, probably because particularly songbirds have for a long time been assumed anosmic. This study aimed to test whether offspring might be recognised via smell. We presented zebra finch (Taeniopygia guttata) parents either the odour of their own or that of foreign nestlings and investigated whether the odour presentation resulted in a change in the number of head saccades, i.e. the rapid horizontal turning of the head, with which birds scan their environment and which can be used as a proxy of arousal. Our experiment indicates that male zebra finches, in contrast to females, differentiate between their own and foreign offspring based on odour cues, as indicated by a significant differences in the change of head saccadic movements between males receiving the own chick odour and males receiving the odour of a foreign chick. Thus, it provides behavioural evidence for olfactory offspring recognition in male zebra finches and also the existence of appropriate phenotypic odour cues of the offspring. The question why females do not show any sign of behavioural response remains open, but it might be likely that females use other signatures for offspring recognition.

References

  1. Kempenaers, B. & Sheldon, B. C. Why do male birds not discriminate between their own and extra-pair offspring?. Anim. Behav. 51, 1165–1173 (1996). [DOI: 10.1006/anbe.1996.0118]
  2. Beecher, M. D. Successes and failures of parent-offspring recognition in animals. In Kin Recognition (ed. Hepper, P. G.) 94–124 (Cambridge University Press, 1991).
  3. Sato, N. J., Tokue, K., Noske, R. A., Mikami, O. K. & Ueda, K. Evicting cuckoo nestlings from the nest: a new anti-parasitism behaviour. Biol. Lett. 6, 67–69 (2010). [PMID: 19776068]
  4. Langmore, N. E., Hunt, S. & Kilner, R. M. Escalation of a coevolutionary arms race through host rejection of brood parasitic young. Nature 422, 157–160 (2003). [PMID: 12634784]
  5. Griesser, M., Halvarsson, P., Drobniak, S. M. & Vilà, C. Fine-scale kin recognition in the absence of social familiarity in the Siberian jay, a monogamous bird species. Mol. Ecol. 24, 5726–5738 (2015). [PMID: 26460512]
  6. Grabowska-Zhang, A. M., Hinde, C. A., Garroway, C. J. & Sheldon, B. C. Wherever I may roam: social viscosity and kin affiliation in a wild population despite natal dispersal. Behav. Ecol. 27, 1263–1268 (2016). [PMID: 27418755]
  7. Beach, F. A. & Jaynes, J. Studies of maternal retrieving in rats I: recognition of young. J. Mammal. 37, 177–180 (1956). [DOI: 10.2307/1376675]
  8. Gandelman, R., Zarrow, M. X., Denenberg, V. H. & Myers, M. Olfactory bulb removal eliminates maternal behavior in the mouse. Science 171, 210–211 (1971). [PMID: 5540330]
  9. Porter, R. H., Cernoch, J. M. & McLaughlin, F. J. Maternal recognition of neonates through olfactory cues. Physiol. Behav. 30, 151–154 (1983). [PMID: 6836038]
  10. Russell, M. J., Mendelson, T. & Peeke, H. V. S. Mothers’ identification of their infant’s odors. Ethol. Sociobiol. 4, 29–31 (1983). [DOI: 10.1016/0162-3095(83)90005-5]
  11. Gubernick, D. J. Maternal ‘imprinting’ or maternal ‘labelling’ in goats?. Anim. Behav. 28, 124–129 (1980). [DOI: 10.1016/S0003-3472(80)80016-9]
  12. Main, A. R. & Bull, C. M. Mother–offspring recognition in two Australian lizards, Tiliqua rugosa and Egernia stokesii. Anim. Behav. 52, 193–200 (1996). [DOI: 10.1006/anbe.1996.0164]
  13. Caspers, B. A. et al. Zebra Finch chicks recognise parental scent, and retain chemosensory knowledge of their genetic mother, even after egg cross-fostering. Sci. Rep. 7, 1–8 (2017). [DOI: 10.1038/s41598-017-13110-y]
  14. Halpin, Z. T. Kin recognition cues of vertebrates. In Kin Recognition (ed. Hepper, P. G.) 220–258 (Cambridge University Press, 1991).
  15. Cohen, J. Olfaction and parental behavior in ring doves. Biochem. Syst. Ecol. 9, 351–354 (1981). [DOI: 10.1016/0305-1978(81)90022-3]
  16. Amo, L., Tomás, G., Parejo, D. & Avilés, J. M. Are female starlings able to recognize the scent of their offspring?. PLoS ONE 9, 1–6 (2014). [DOI: 10.1371/journal.pone.0109505]
  17. Immelmann, K. Beiträge zu einer vergleichenden Biologie australischer Prachtfinken (Spermestidae). Zool Jb Syst 90, 1–196 (1962).
  18. Immelmann, K. Der Zebrafink. (A. Ziemsen Verlag, 1968).
  19. Zann, R. A. The Zebra Finch: A Synthesis of Field and Laboratory Studies. (Oxford University Press, 1996).
  20. Krause, E. T. et al. Olfaction in the zebra finch (Taeniopygia guttata): what is known and further perspectives. Adv. Study Behav. 50, 1–55 (2018).
  21. Caspers, B. A., Gagliardo, A. & Krause, E. T. Impact of kin odour on reproduction in zebra finches. Behav. Ecol. Sociobiol. 69, 1827–1833 (2015). [DOI: 10.1007/s00265-015-1995-9]
  22. Caspers, B. A. & Krause, E. T. Odour-based natal nest recognition in the zebra finch (Taeniopygia guttata), a colony-breeding songbird. Biol. Lett. 7, 184–186 (2011). [PMID: 20880859]
  23. Krause, E. T. & Caspers, B. A. Are olfactory cues involved in nest recognition in two social species of estrildid finches?. PLoS ONE 7, 1–7 (2012). [DOI: 10.1371/journal.pone.0036615]
  24. Golüke, S., Dörrenberg, S., Krause, E. T. & Caspers, B. A. Female zebra finches smell their eggs. PLoS ONE 11, e0155513 (2016). [PMID: 27192061]
  25. Krause, E. T., Krüger, O., Kohlmeier, P. & Caspers, B. A. Olfactory kin recognition in a songbird. Biol. Lett. 8, 327–329 (2012). [PMID: 22219391]
  26. Griffith, S. C., Owens, I. P. F. & Thuman, K. A. Extra pair paternity in birds: a review of interspecific variation and adaptive function. Mol. Ecol. 11, 2195–2212 (2002). [PMID: 12406233]
  27. Griffith, S. C., Holleley, C. E., Mariette, M. M., Pryke, S. R. & Svedin, N. Low level of extrapair parentage in wild zebra finches. Anim. Behav. 79, 261–264 (2010). [DOI: 10.1016/j.anbehav.2009.11.031]
  28. Birkhead, T. R., Burke, T., Zann, R. A., Hunter, F. M. & Krupa, A. P. Extra-pair paternity and intraspecific brood parasitism in wild zebra finches Taeniopygia gutta, revealed by DNA fingerprinting. Behav. Ecol. Sociobiol. 27, 315–324 (1990). [DOI: 10.1007/BF00164002]
  29. Golüke, S., Bischof, H.-J., Engelmann, J., Caspers, B. A. & Mayer, U. Social odour activates the hippocampal formation in zebra finches (Taeniopygia guttata). Behav. Brain Res. 364, 41–49 (2019). [PMID: 30738914]
  30. Griffith, S. C. & Buchanan, K. L. The Zebra Finch: The ultimate Australian supermodel. Emu 110, (2010).
  31. Forstmeier, W., Segelbacher, G., Mueller, J. C. & Kempenaers, B. Genetic variation and differentiation in captive and wild zebra finches (Taeniopygia guttata). Mol. Ecol. 16, 4039–4050 (2007). [PMID: 17894758]
  32. Caro, S. P., Balthazart, J. & Bonadonna, F. The perfume of reproduction in birds: chemosignaling in avian social life. Horm. Behav. 68, 25–42 (2015). [PMID: 24928570]
  33. Hagelin, J. C. & Jones, I. L. Bird odors and other chemical substancees: a defense mechanism or overlooked mode of intraspecific communication?. Auk 124, 741–761 (2007). [DOI: 10.1093/auk/124.3.741]
  34. Jacob, J. & Ziswiler, V. The uropygial gland. In Avian Biology (eds. Farner, D. S., King, J. R. & Parks, K. C.) 199–324 (Academic Press, 1982).
  35. Golüke, S. & Caspers, B. A. Sex-specific differences in preen gland size of zebra finches during the course of breeding. Auk 134, 821–831 (2017). [DOI: 10.1642/AUK-17-12.1]
  36. Krause, E. T. et al. Differences in olfactory species recognition in the females of two Australian songbird species. Behav. Ecol. Sociobiol. 68, 1819–1827 (2014). [DOI: 10.1007/s00265-014-1791-y]
  37. Rossi, M. et al. Begging blue tit nestlings discriminate between the odour of familiar and unfamiliar conspecifics. Funct. Ecol. 31, 1761–1769 (2017). [DOI: 10.1111/1365-2435.12886]
  38. Caspers, B. A., Hoffman, J. I., Kohlmeier, P., Krüger, O. & Krause, E. T. Olfactory imprinting as a mechanism for nest odour recognition in zebra finches. Anim. Behav. 86, 85–90 (2013). [DOI: 10.1016/j.anbehav.2013.04.015]
  39. Pinheiro, J., Bates, D., DebRoy, S. & Sarkar, D. R Core Team. (2016). nlme: Linear and Nonlinear Mixed Effects Models [Software], R package version 3.1-127. (2016).
  40. Engqvist, L. The mistreatment of covariate interaction terms in linear model analyses of behavioural and evolutionary ecology studies. Anim. Behav. 70, 967–971 (2005). [DOI: 10.1016/j.anbehav.2005.01.016]
  41. Westneat, D. F., Clark, A. B. & Rambo, K. C. Within-brood patterns of paternity and paternal behavior in red-winged blackbirds. Behav. Ecol. 37, 349–356 (1995). [DOI: 10.1007/BF00174140]
  42. Burke, T., Davies, N. B., Bruford, W. & Hatchwell, B. J. Parental care and mating behaviour of polyandrous dunnocks Prunella modularis related to paternity by DNA fingerprinting. Nature 338, 249–251 (1989). [DOI: 10.1038/338249a0]
  43. Riehl, C. & Strong, M. J. Social living without kin discrimination: experimental evidence from a communally breeding bird. Behav. Ecol. Sociobiol. 69, 1293–1299 (2015). [DOI: 10.1007/s00265-015-1942-9]
  44. Grim, T. The evolution of nestling discrimination by hosts of parasitic birds: Why is rejection so rare?. Evol. Ecol. Res. 8, 785–802 (2006).
  45. Leclaire, S., Bourret, V. & Bonadonna, F. Blue petrels recognize the odor of their egg. J. Exp. Biol. https://doi.org/10.1242/jeb.163899 (2017). [DOI: 10.1242/jeb.163899]
  46. Yang, C. et al. Reject the odd egg: egg recognition mechanisms in parrotbills. Behav. Ecol. 25, 1320–1324 (2014). [DOI: 10.1093/beheco/aru124]
  47. Liang, W. et al. Modelling the maintenance of egg polymorphism in avian brood parasites and their hosts. J. Evol. Biol. 25, 916–929 (2012). [PMID: 22404333]
  48. Beecher, M. D., Medvin, M. B., Stoddard, P. K. & Loesche, P. Acoustic adaptations for parent-offspring recognition in swallows. Exp. Biol. Med. 45, 179–193 (1986).
  49. Cullen, E. Adaptations in the kittiwake to cliff-nesting. Ibis 99, 275–302 (1957). [DOI: 10.1111/j.1474-919X.1957.tb01950.x]
  50. Benedict, L. Offspring discrimination without recognition: California towhee responses to chick distress calls. The Condor 109, 79–87 (2007). [DOI: 10.1093/condor/109.1.79]
  51. Schielzeth, H. & Bolund, E. Patterns of conspecific brood parasitism in zebra finches. Anim. Behav. 79, 1329–1337 (2010). [DOI: 10.1016/j.anbehav.2010.03.006]

MeSH Term

Animals
Animals, Newborn
Behavior, Animal
Cues
Female
Finches
Male
Nesting Behavior
Odorants
Recognition, Psychology
Smell

Word Cloud

Created with Highcharts 10.0.0offspringodourrecognitionmaleforeignzebrabirdsheadfinchesfemalesbehaviouralsongbirdsassumedolfactorywhethermightchangecuesmalesreceivingchickresponseStudiesinvestigatingparentledconclusionabsentearlynestlingstageEspeciallyoftenunablediscriminateHowevertakenaccountyetprobablyparticularlylongtimeanosmicstudyaimedtestrecognisedviasmellpresentedfinchTaeniopygiaguttataparentseithernestlingsinvestigatedpresentationresultednumbersaccadesierapidhorizontalturningscanenvironmentcanusedproxyarousalexperimentindicatescontrastdifferentiatebasedindicatedsignificantdifferencessaccadicmovementsThusprovidesevidencealsoexistenceappropriatephenotypicquestionshowsignremainsopenlikelyusesignaturesNestlingmodulatesfemale

Similar Articles

Cited By

No available data.