COVID-19: Short-term forecast of ICU beds in times of crisis.

Marcel Goic, Mirko S Bozanic-Leal, Magdalena Badal, Leonardo J Basso
Author Information
  1. Marcel Goic: Department of Industrial Engineering, University of Chile, Santiago, Chile. ORCID
  2. Mirko S Bozanic-Leal: Department of Industrial Engineering, University of Chile, Santiago, Chile.
  3. Magdalena Badal: Department of Industrial Engineering, University of Chile, Santiago, Chile.
  4. Leonardo J Basso: Instituto de Sistemas Complejos de Ingeniería (ISCI), Santiago, Chile.

Abstract

By early May 2020, the number of new COVID-19 infections started to increase rapidly in Chile, threatening the ability of health services to accommodate all incoming cases. Suddenly, ICU capacity planning became a first-order concern, and the health authorities were in urgent need of tools to estimate the demand for urgent care associated with the pandemic. In this article, we describe the approach we followed to provide such demand forecasts, and we show how the use of analytics can provide relevant support for decision making, even with incomplete data and without enough time to fully explore the numerical properties of all available forecasting methods. The solution combines autoregressive, machine learning and epidemiological models to provide a short-term forecast of ICU utilization at the regional level. These forecasts were made publicly available and were actively used to support capacity planning. Our predictions achieved average forecasting errors of 4% and 9% for one- and two-week horizons, respectively, outperforming several other competing forecasting models.

References

  1. Chaos Solitons Fractals. 2020 Oct;139:110058 [PMID: 32834611]
  2. J Thorac Dis. 2020 Mar;12(3):165-174 [PMID: 32274081]
  3. Chaos Solitons Fractals. 2020 Jun;135:109853 [PMID: 32501370]
  4. Proc Natl Acad Sci U S A. 2020 May 5;117(18):9696-9698 [PMID: 32300018]
  5. Sci Rep. 2021 Apr 6;11(1):7555 [PMID: 33824378]
  6. Lancet Infect Dis. 2020 May;20(5):553-558 [PMID: 32171059]
  7. IEEE Trans Inf Technol Biomed. 2009 May;13(3):380-8 [PMID: 19244023]
  8. Lancet Respir Med. 2020 May;8(5):506-517 [PMID: 32272080]
  9. Proc Natl Acad Sci U S A. 2020 May 12;117(19):10484-10491 [PMID: 32327608]
  10. IEEE Trans Neural Netw. 1997;8(5):1065-70 [PMID: 18255709]
  11. Commun Nonlinear Sci Numer Simul. 2020 Sep;88:105303 [PMID: 32355435]
  12. Infect Dis Model. 2020;5:271-281 [PMID: 32289100]
  13. N Engl J Med. 2020 May 21;382(21):2012-2022 [PMID: 32227758]
  14. Eur J Oper Res. 2021 Dec 1;295(2):648-663 [PMID: 36569384]
  15. JAMA. 2020 May 19;323(19):1893-1894 [PMID: 32297897]
  16. Acad Emerg Med. 2009 Apr;16(4):301-8 [PMID: 19210488]
  17. J Clin Med. 2020 Feb 22;9(2): [PMID: 32098289]
  18. Health Care Manag Sci. 2007 Feb;10(1):47-66 [PMID: 17323654]
  19. Bus Horiz. 2014 Sep;57(5):571-582 [PMID: 25429161]
  20. Health Inf Sci Syst. 2014 Feb 07;2:3 [PMID: 25825667]
  21. IEEE Trans Neural Netw. 1990;1(2):179-91 [PMID: 18282835]
  22. Int J Infect Dis. 2020 Jul;96:376-383 [PMID: 32425631]
  23. Health Care Manag Sci. 2002 Nov;5(4):297-305 [PMID: 12437279]
  24. JAMA. 2020 Apr 28;323(16):1545-1546 [PMID: 32167538]
  25. PLoS One. 2020 Mar 31;15(3):e0231236 [PMID: 32231392]
  26. Science. 2020 Apr 24;368(6489):395-400 [PMID: 32144116]
  27. IEEE Trans Neural Netw Learn Syst. 2016 Apr;27(4):809-21 [PMID: 25966483]
  28. Trends Microbiol. 2014 May;22(5):282-91 [PMID: 24661923]

MeSH Term

COVID-19
Forecasting
Humans
Intensive Care Units
Models, Statistical
Neural Networks, Computer
Pandemics

Word Cloud

Created with Highcharts 10.0.0ICUprovideforecastinghealthcapacityplanningurgentdemandforecastssupportavailablemodelsforecastearlyMay2020numbernewCOVID-19infectionsstartedincreaserapidlyChilethreateningabilityservicesaccommodateincomingcasesSuddenlybecamefirst-orderconcernauthoritiesneedtoolsestimatecareassociatedpandemicarticledescribeapproachfollowedshowuseanalyticscanrelevantdecisionmakingevenincompletedatawithoutenoughtimefullyexplorenumericalpropertiesmethodssolutioncombinesautoregressivemachinelearningepidemiologicalshort-termutilizationregionallevelmadepubliclyactivelyusedpredictionsachievedaverageerrors4%9%one-two-weekhorizonsrespectivelyoutperformingseveralcompetingCOVID-19:Short-termbedstimescrisis

Similar Articles

Cited By