The therapeutic application of human induced pluripotent stem cells (hiPSCs) for cartilage regeneration is largely hindered by the low yield of chondrocytes accompanied by unpredictable and heterogeneous off-target differentiation of cells during chondrogenesis. Here, we combine bulk RNA sequencing, single cell RNA sequencing, and bioinformatic analyses, including weighted gene co-expression analysis (WGCNA), to investigate the gene regulatory networks regulating hiPSC differentiation under chondrogenic conditions. We identify specific WNTs and MITF as hub genes governing the generation of off-target differentiation into neural cells and melanocytes during hiPSC chondrogenesis. With heterocellular signaling models, we further show that WNT signaling produced by off-target cells is responsible for inducing chondrocyte hypertrophy. By targeting WNTs and MITF, we eliminate these cell lineages, significantly enhancing the yield and homogeneity of hiPSC-derived chondrocytes. Collectively, our findings identify the trajectories and molecular mechanisms governing cell fate decision in hiPSC chondrogenesis, as well as dynamic transcriptome profiles orchestrating chondrocyte proliferation and differentiation.
References
Adkar, S. S. et al. Genome engineering for personalized arthritis therapeutics. Trends Mol. Med. 23, 917–931 (2017).
[PMID: 28887050]
Nam, Y., Rim, Y. A., Jung, S. M. & Ju, J. H. Cord blood cell-derived iPSCs as a new candidate for chondrogenic differentiation and cartilage regeneration. Stem Cell Res. Ther. 8, 16 (2017).
[PMID: 28129782]
Koyama, N. et al. Human induced pluripotent stem cells differentiated into chondrogenic lineage via generation of mesenchymal progenitor cells. Stem Cells Dev. 22, 102–113 (2012).
[PMID: 22817676]
Craft, A. M. et al. Generation of articular chondrocytes from human pluripotent stem cells. Nat. Biotechnol. 33, 638 (2015).
[PMID: 25961409]
Yamashita, A. et al. Generation of scaffoldless hyaline cartilaginous tissue from human iPSCs. Stem Cell Rep. 4, 404–418 (2015).
[DOI: 10.1016/j.stemcr.2015.01.016]
Chan, C. K. et al. Identification of the human skeletal stem cell. Cell 175, 43–56. e21 (2018).
[PMID: 30241615]
Loh, K. M. et al. Mapping the pairwise choices leading from pluripotency to human bone, heart, and other mesoderm cell types. Cell 166, 451–467 (2016).
[PMID: 27419872]
Adkar, S. S. et al. Step‐wise chondrogenesis of human induced pluripotent stem cells and purification via a reporter allele generated by CRISPR‐Cas9 genome editing. Stem Cells 37, 65–76 (2019).
[PMID: 30378731]
Theunissen, T. W. et al. Molecular criteria for defining the naive human pluripotent state. Cell Stem Cell 19, 502–515 (2016).
[PMID: 27424783]
Kempf, H. et al. Bulk cell density and Wnt/TGFbeta signalling regulate mesendodermal patterning of human pluripotent stem cells. Nat. Commun. 7, 13602 (2016).
[PMID: 27934856]
Akhtar, N. et al. MicroRNA‐27b regulates the expression of matrix metalloproteinase 13 in human osteoarthritis chondrocytes. Arthritis Rheum. 62, 1361–1371 (2010).
[PMID: 20131257]
Baker, N. E. & Brown, N. L. All in the family: proneural bHLH genes and neuronal diversity. Development 145, dev159426 (2018).
[PMID: 29720483]
Luo, W., Friedman, M. S., Shedden, K., Hankenson, K. D. & Woolf, P. J. GAGE: generally applicable gene set enrichment for pathway analysis. BMC Bioinform. 10, 161 (2009).
[DOI: 10.1186/1471-2105-10-161]
Ferguson, G. B. et al. Mapping molecular landmarks of human skeletal ontogeny and pluripotent stem cell-derived articular chondrocytes. Nat. Commun. 9, 3634 (2018).
[PMID: 30194383]
Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol. 36, 411 (2018).
[PMID: 29608179]
Trapnell, C. et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat. Biotechnol. 32, 381 (2014).
[PMID: 24658644]
Simões-Costa, M. & Bronner, M. E. Establishing neural crest identity: a gene regulatory recipe. Development 142, 242–257 (2015).
[PMID: 25564621]
ten Berge, D., Brouwer, A., Korving, J., Martin, J. F. & Meijlink, F. Prx1 and Prx2 in skeletogenesis: roles in the craniofacial region, inner ear and limbs. Development 125, 3831–3842 (1998).
[PMID: 9729491]
Vachtenheim, J. & Borovanský, J. “Transcription physiology” of pigment formation in melanocytes: central role of MITF. Exp. Dermatol. 19, 617–627 (2010).
[PMID: 20201954]
Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinform. 9, 559 (2008).
[DOI: 10.1186/1471-2105-9-559]
Barthelemy, M. Betweenness centrality in large complex networks. Eur. Phys. J. B 38, 163–168 (2004).
[DOI: 10.1140/epjb/e2004-00111-4]
Jané-Valbuena, J. et al. An oncogenic role for ETV1 in melanoma. Cancer Res. 70, 2075–2084 (2010).
[PMID: 20160028]
Nakajima, T. et al. Modeling human somite development and fibrodysplasia ossificans progressiva with induced pluripotent stem cells. Development 145, dev165431 (2018).
[PMID: 30139810]
Wu, L. et al. Human developmental chondrogenesis as a basis for engineering chondrocytes from pluripotent stem cells. Stem Cell Rep. 1, 575–589 (2013).
[DOI: 10.1016/j.stemcr.2013.10.012]
Saito, M. et al. The indispensable role of cyclin-dependent kinase 1 in skeletal development. Sci. Rep. 6, 1–10 (2016).
[DOI: 10.1038/srep20622]
Kiepe, D., Ciarmatori, S., Haarmann, A. & Tönshoff, B. Differential expression of IGF system components in proliferating vs. differentiating growth plate chondrocytes: the functional role of IGFBP-5. Am. J. Physiol. Endocrinol. Metab. 290, E363–E371 (2006).
[PMID: 16204335]
Wagner, E. Functions of AP1 (Fos/Jun) in bone development. Ann. Rheum. Dis. 61, ii40–ii42 (2002).
[PMID: 12379619]
Van der Kraan, P. & Van den Berg, W. Chondrocyte hypertrophy and osteoarthritis: role in initiation and progression of cartilage degeneration? Osteoarthr. Cartil. 20, 223–232 (2012).
[DOI: 10.1016/j.joca.2011.12.003]
Späth, S. S., Andrade, A. C., Chau, M., Baroncelli, M. & Nilsson, O. Evidence that rat chondrocytes can differentiate into perichondrial cells. JBMR 2, 351–361 (2018).
Chen, X. et al. Integration capacity of human induced pluripotent stem cell-derived cartilage. Tissue Eng. Part A 25, 437–445 (2019).
[PMID: 30129877]
Crowe, A. R. & Yue, W. Semi-Quantitative Determination of Protein Expression Using Immunohistochemistry Staining and Analysis: An Integrated Protocol. Bio-protocol 9.24 (2019).
Ramilowski, J. A. et al. A draft network of ligand–receptor-mediated multicellular signalling in human. Nat. Commun. 6, 7866 (2015).
[PMID: 26198319]
Dexheimer, V. et al. Differential expression of TGF-β superfamily members and role of Smad1/5/9-signalling in chondral versus endochondral chondrocyte differentiation. Sci. Rep. 6, 1–14 (2016).
[DOI: 10.1038/srep36655]
Diederichs, S. et al. Regulation of WNT5A and WNT11 during MSC in vitro chondrogenesis: WNT inhibition lowers BMP and hedgehog activity, and reduces hypertrophy. Cell. Mol. Life Sci. 76, 3875–3889 (2019).
[PMID: 30980110]
Spagnoli, A. et al. Identification of STAT-1 as a molecular target of IGFBP-3 in the process of chondrogenesis. J. Biol. Chem. 277, 18860–18867 (2002).
[PMID: 11886859]
Evans, D. S. et al. Genome-wide association and functional studies identify a role for IGFBP3 in hip osteoarthritis. Ann. Rheum. Dis. 74, 1861–1867 (2015).
[PMID: 24928840]
Jia, S. et al. Bmp4-Msx1 signaling and Osr2 control tooth organogenesis through antagonistic regulation of secreted Wnt antagonists. Dev. Biol. 420, 110–119 (2016).
[PMID: 27713059]
Narcisi, R. et al. Long-term expansion, enhanced chondrogenic potential, and suppression of endochondral ossification of adult human MSCs via WNT signaling modulation. Stem Cell Rep. 4, 459–472 (2015).
[DOI: 10.1016/j.stemcr.2015.01.017]
Dicks, A. et al. Prospective isolation of chondroprogenitors from human iPSCs based on cell surface markers identified using a CRISPR-Cas9-generated reporter. Stem Cell Res. Ther. 11, 1–14 (2020).
[DOI: 10.1186/s13287-020-01597-8]
Ressl, S. et al. Structures of C1q-like proteins reveal unique features among the C1q/TNF superfamily. Structure 23, 688–699 (2015).
[PMID: 25752542]
Yamashita, A. et al. Considerations in hiPSC-derived cartilage for articular cartilage repair. Inflamm. Regen. 38, 1–7 (2018).
[DOI: 10.1186/s41232-018-0075-8]
Shi, Q. et al. Genetic variants in WNT2B and BTRC predict melanoma survival. J. Investig. Dermatol. 137, 1749–1756 (2017).
[PMID: 28499756]
Harrison-Uy, S. J. & Pleasure, S. J. Wnt signaling and forebrain development. Cold Spring Harb. Perspect. Biol. 4, a008094 (2012).
[PMID: 22621768]
Elizalde, C. et al. Distinct roles for Wnt‐4 and Wnt‐11 during retinoic acid‐induced neuronal differentiation. Stem Cells 29, 141–153 (2011).
[PMID: 21280163]
Deng, Y. et al. Engineering hyaline cartilage from mesenchymal stem cells with low hypertrophy potential via modulation of culture conditions and Wnt/β-catenin pathway. Biomaterials 192, 569–578 (2019).
[PMID: 30544046]
Kumar, D. & Lassar, A. B. Fibroblast growth factor maintains chondrogenic potential of limb bud mesenchymal cells by modulating DNMT3A recruitment. Cell Rep. 8, 1419–1431 (2014).
[PMID: 25159139]
Huynh, N. P., Zhang, B. & Guilak, F. High-depth transcriptomic profiling reveals the temporal gene signature of human mesenchymal stem cells during chondrogenesis. FASEB J. 33, 358–372 (2018).
[PMID: 29985644]
Qu, F., Palte, I. C., Gontarz, P. M., Zhang, B. & Guilak, F. Transcriptomic analysis of bone and fibrous tissue morphogenesis during digit tip regeneration in the adult mouse. FASEB J. 34, 9740–9754 (2020).
[PMID: 32506623]
Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10–12 (2011).
[DOI: 10.14806/ej.17.1.200]
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).
[PMID: 23104886]
Liao, Y., Smyth, G. K. & Shi, W. The Subread aligner: fast, accurate and scalable read mapping by seed-and-vote. Nucleic Acids Res. 41, e108–e108 (2013).
[PMID: 23558742]
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
[PMID: 25516281]
Wickham H. ggplot2: Elegant Graphics for Data Analysis. (Springer, 2016).
Gu, Z., Eils, R. & Schlesner, M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 32, 2847–2849 (2016).
[PMID: 27207943]
Maaten, Lvd. & Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008).
Huang, D. W. et al. The DAVID Gene Functional Classification Tool: a novel biological module-centric algorithm to functionally analyze large gene lists. Genome Biol. 8, R183 (2007).
[PMID: 17784955]
Tirosh, I. et al. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science 352, 189–196 (2016).
[PMID: 27124452]
Qiu, X. et al. Single-cell mRNA quantification and differential analysis with Census. Nat. Methods 14, 309 (2017).
[PMID: 28114287]
Su, G., Kuchinsky, A., Morris, J. H., States, D. J. & Meng, F. GLay: community structure analysis of biological networks. Bioinformatics 26, 3135–3137 (2010).
[PMID: 21123224]
Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).
[PMID: 14597658]
Hrvatin, S. et al. Single-cell analysis of experience-dependent transcriptomic states in the mouse visual cortex. Nat. Neurosci. 21, 120 (2018).
[PMID: 29230054]
Gu, Z., Gu, L., Eils, R., Schlesner, M. & Brors, B. Circlize implements and enhances circular visualization in R. Bioinformatics 30, 2811–2812 (2014).
[DOI: 10.1093/bioinformatics/btu393]
Wu, C.-L., Diekman, B., Jain, D. & Guilak, F. Diet-induced obesity alters the differentiation potential of stem cells isolated from bone marrow, adipose tissue and infrapatellar fat pad: the effects of free fatty acids. Int. J. Obes. 37, 1079 (2013).
[DOI: 10.1038/ijo.2012.171]