Silicon alleviates salinity stress in licorice (Glycyrrhiza uralensis) by regulating carbon and nitrogen metabolism.

Jiajia Cui, Enhe Zhang, Xinhui Zhang, Qi Wang
Author Information
  1. Jiajia Cui: College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China.
  2. Enhe Zhang: College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China. 416483736@qq.com.
  3. Xinhui Zhang: College of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization Ministry of Education, Ningxia Medical University, Yinchuan, 750004, China. zhang2013512@163.com.
  4. Qi Wang: College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China.

Abstract

Salt stress is one of the key factors that limits the cultivation of Glycyrrhiza uralensis Fisch. (G. uralensis) in the northern part of China. In this study, three salt treatments (including 21, 42 and 63 ds/m NaCl/kg dry soil) and four Si (silicon) concentrations (including 0, 1.4, 2.8 and 4.2 ds/m SiO/kg KSiO in dry soil) were tested using G. uralensis as the plant material in a pot experiment with three replications. The results showed that the application of various concentrations of Si increased sucrose synthetase (SS), sucrose phosphate synthetase (SPS) and glutamine synthetase (GS), as well as nitrate reductase (NR) activities, and promoted carbon and nitrogen metabolism. Si application also increased the root dry weight of G. uralensis. Multilevel comparative analysis showed that the application of 2.8 ds/m SiO was the optimum rate for improved growth and yield of G. uralensis under different salt levels. This study provides important information that can form the basis for the cultivation of high-yielding and high-quality G. uralensis in saline soils.

References

  1. J Plant Physiol. 2003 Oct;160(10):1157-64 [PMID: 14610884]
  2. Sci Rep. 2020 Oct 19;10(1):17672 [PMID: 33077742]
  3. Plant Biol (Stuttg). 2011 Mar;13(2):325-32 [PMID: 21309979]
  4. Plant Physiol Biochem. 2013 Feb;63:115-21 [PMID: 23257076]
  5. Physiol Mol Biol Plants. 2008 Jul;14(3):179-82 [PMID: 23572885]
  6. PeerJ. 2018 Dec 10;6:e6043 [PMID: 30581664]
  7. Front Plant Sci. 2017 Feb 06;8:69 [PMID: 28220130]
  8. J Exp Bot. 2008;59(1):111-9 [PMID: 18093964]
  9. Int J Genomics. 2014;2014:701596 [PMID: 24804192]
  10. J Exp Bot. 2003 Aug;54(389):1813-20 [PMID: 12815030]
  11. Plant Cell Environ. 2010 Apr;33(4):490-509 [PMID: 19843257]
  12. J Exp Bot. 2006;57(3):665-73 [PMID: 16415332]
  13. J Plant Physiol. 2003 Feb;160(2):115-23 [PMID: 12685027]
  14. Front Plant Sci. 2020 Mar 12;11:260 [PMID: 32226436]
  15. Mol Plant. 2010 Nov;3(6):973-96 [PMID: 20926550]
  16. Front Plant Sci. 2013 Jan 31;4:8 [PMID: 23386857]
  17. Plants (Basel). 2019 Nov 17;8(11): [PMID: 31744255]
  18. Funct Plant Biol. 2005 May;32(3):209-219 [PMID: 32689125]
  19. Plant Cell Rep. 2015 Sep;34(9):1629-46 [PMID: 26021845]
  20. J Plant Physiol. 2016 Jul 20;199:87-95 [PMID: 27302009]
  21. J Exp Bot. 2011 Jan;62(2):469-86 [PMID: 20952627]
  22. Plant Physiol. 2020 Apr;182(4):1894-1909 [PMID: 32024696]
  23. Plant J. 2017 Jan;89(2):181-194 [PMID: 27775193]

Word Cloud

Created with Highcharts 10.0.0uralensisGds/mdrySi2applicationsynthetasestresscultivationGlycyrrhizastudythreesaltincludingsoilconcentrations48showedincreasedsucrosecarbonnitrogenmetabolismSaltonekeyfactorslimitsFischnorthernpartChinatreatments214263NaCl/kgfoursilicon01SiO/kgKSiOtestedusingplantmaterialpotexperimentreplicationsresultsvariousSSphosphateSPSglutamineGSwellnitratereductaseNRactivitiespromotedalsorootweightMultilevelcomparativeanalysisSiOoptimumrateimprovedgrowthyielddifferentlevelsprovidesimportantinformationcanformbasishigh-yieldinghigh-qualitysalinesoilsSiliconalleviatessalinitylicoriceregulating

Similar Articles

Cited By