Effect of 5-HT2A receptor antagonism on levels of D2/3 receptor occupancy and adverse behavioral side-effects induced by haloperidol: a SPECT imaging study in the rat.

Stergios Tsartsalis, Benjamin B Tournier, Yesica Gloria, Philippe Millet, Nathalie Ginovart
Author Information
  1. Stergios Tsartsalis: Division of Adult Psychiatry, Department of Psychiatry, Geneva University Hospitals, Geneva, Switzerland. stergios.tsartsalis@hcuge.ch. ORCID
  2. Benjamin B Tournier: Division of Adult Psychiatry, Department of Psychiatry, Geneva University Hospitals, Geneva, Switzerland.
  3. Yesica Gloria: Division of Adult Psychiatry, Department of Psychiatry, Geneva University Hospitals, Geneva, Switzerland.
  4. Philippe Millet: Division of Adult Psychiatry, Department of Psychiatry, Geneva University Hospitals, Geneva, Switzerland. ORCID
  5. Nathalie Ginovart: Department of Psychiatry, Faculty of Medicine, University of Geneva, Geneva, Switzerland. ORCID

Abstract

Several studies suggested that 5-HT receptor (5-HTR) blockade may provide a more favorable efficacy and side-effect profile to antipsychotic treatment. We hypothesized that a combined haloperidol (a D receptor (DR) antagonist) and MDL-100,907 (a 5-HTR antagonist) treatment would reverse the side effects and the neurochemical alterations induced by haloperidol alone and would potentialize its efficacy. We thus chronically treated male Mdr1a knock-out rats with several doses of haloperidol alone or in combination with a saturating dose of a MDL-100,907. Receptor occupancy at clinically relevant levels was validated with a dual-radiotracer in-vivo SPECT imaging of DR and 5-HTR occupancy. Experimental tests of efficacy (dizocilpine-disrupted prepulse inhibition (PPI) of the startle reflex) and side effects (catalepsy, vacuous chewing movements) were performed. Finally, a second dual-radiotracer in-vivo SPECT scan assessed the neurochemical changes induced by the chronic treatments. Chronic haloperidol failed to reverse PPI disruption induced by dizocilpine, whilst administration of MDL-100,907 along with haloperidol was associated with a reversal of the effect of dizocilpine. Haloperidol at 0.5 mg/kg/day and at 1 mg/kg/day induced catalepsy that was significantly alleviated (by ~50%) by co-treatment with MDL-100,907 but only at 0.5 mg/kg/day dose of haloperidol. Chronic haloperidol treatment, event at doses as low as 0.1 mg/kg/day induced a significant upregulation of the DR in the striatum (by over 40% in the nucleus accumbens and over 20% in the caudate-putamen nuclei), that was not reversed by MDL-100,907. Finally, an upregulation of 5-HTR after chronic haloperidol treatment at a moderate dose only (0.25 mg/kg/day) was demonstrated in frontal cortical regions and the ventral tegmental area. Overall, a partial contribution of a 5-HTR antagonism to the efficacy and side-effect profile of antipsychotic agents is suggested.

References

  1. J Neurosci Methods. 2006 Sep 15;155(2):272-84 [PMID: 16519945]
  2. Biol Psychiatry. 2000 Apr 1;47(7):670-6 [PMID: 10745061]
  3. Int J Neuropsychopharmacol. 2011 Nov;14(10):1327-39 [PMID: 21281560]
  4. J Neurochem. 2007 Jul;102(2):550-61 [PMID: 17394545]
  5. Pharmacol Biochem Behav. 2002 Apr;71(4):727-34 [PMID: 11888564]
  6. World Psychiatry. 2018 Oct;17(3):330-340 [PMID: 30192088]
  7. J Neural Transm (Vienna). 1999;106(11-12):1205-16 [PMID: 10651114]
  8. Psychopharmacology (Berl). 2008 Nov;200(4):487-96 [PMID: 18597077]
  9. Prog Neuropsychopharmacol Biol Psychiatry. 2018 Jun 8;84(Pt A):272-281 [PMID: 29410000]
  10. Psychopharmacology (Berl). 2005 Oct;182(1):84-94 [PMID: 15986194]
  11. Neuropharmacology. 2004 Sep;47(4):527-37 [PMID: 15380371]
  12. Can J Psychiatry. 2018 Jan 1;:706743718777392 [PMID: 29758999]
  13. Methods Find Exp Clin Pharmacol. 2007 Apr;29(3):211-6 [PMID: 17520104]
  14. Neuropsychopharmacology. 2000 Nov;23(5):517-27 [PMID: 11027917]
  15. Neuropharmacology. 2014 Apr;79:49-58 [PMID: 24211653]
  16. Transl Psychiatry. 2016 Apr 19;6:e784 [PMID: 27093066]
  17. Pharmacol Biochem Behav. 2001 Mar;68(3):363-70 [PMID: 11325387]
  18. Behav Brain Res. 2004 Feb 4;149(1):9-16 [PMID: 14739005]
  19. Curr Opin Pharmacol. 2004 Feb;4(1):53-7 [PMID: 15018839]
  20. Pharmacol Biochem Behav. 2017 Feb;153:141-146 [PMID: 28057524]
  21. Eur Neuropsychopharmacol. 2015 Dec;25(12):2381-93 [PMID: 26508706]
  22. J Psychopharmacol. 2014 Apr;28(4):376-86 [PMID: 24045880]
  23. CNS Spectr. 2017 Dec;22(6):484-494 [PMID: 28059046]
  24. Neuroscience. 1996 Jul;73(2):531-40 [PMID: 8783268]
  25. Neuropsychopharmacology. 2002 Sep;27(3):430-41 [PMID: 12225700]
  26. Braz J Psychiatry. 2013;35 Suppl 2:S132-9 [PMID: 24271225]
  27. J Neurochem. 2003 Nov;87(4):831-42 [PMID: 14622114]
  28. Int J Neuropsychopharmacol. 2006 Oct;9(5):565-73 [PMID: 16316487]
  29. Psychopharmacology (Berl). 2002 May;161(3):263-70 [PMID: 12021829]
  30. Prog Neuropsychopharmacol Biol Psychiatry. 2002 Oct;26(6):1047-54 [PMID: 12452525]
  31. Front Integr Neurosci. 2013 May 23;7:40 [PMID: 23734105]
  32. Behav Brain Res. 2013 Nov 15;257:77-82 [PMID: 24045065]
  33. Cereb Cortex. 2009 Jul;19(7):1678-86 [PMID: 19029064]
  34. Neuroscience. 1997 Jun;78(4):985-96 [PMID: 9174067]
  35. Br J Pharmacol. 1999 Feb;126(3):572-4 [PMID: 10188965]
  36. Psychopharmacology (Berl). 2008 Aug;199(3):331-88 [PMID: 18568339]
  37. Mol Imaging. 2014;13: [PMID: 24622810]
  38. J Neural Transm (Vienna). 2000;107(3):295-302 [PMID: 10821438]
  39. Behav Brain Res. 2006 Aug 10;171(2):286-94 [PMID: 16697060]
  40. Proc Natl Acad Sci U S A. 1994 May 10;91(10):4353-6 [PMID: 8183912]
  41. Can J Psychiatry. 2000 Apr;45(3):241-6 [PMID: 10779880]
  42. J Neurosci. 2002 Apr 1;22(7):2843-54 [PMID: 11923449]
  43. Lancet. 2013 Sep 14;382(9896):951-62 [PMID: 23810019]
  44. Pharmacol Ther. 2016 Jan;157:125-62 [PMID: 26617215]
  45. Handb Exp Pharmacol. 2012;(212):27-52 [PMID: 23129327]
  46. Eur J Pharmacol. 1995 Dec 27;294(1):247-51 [PMID: 8788438]
  47. Mol Imaging. 2015;14: [PMID: 26105563]
  48. Neuropsychopharmacology. 2003 Aug;28(8):1433-9 [PMID: 12838271]
  49. Biol Psychiatry. 2001 Dec 1;50(11):873-83 [PMID: 11743942]
  50. Pharmacol Biochem Behav. 2005 Apr;80(4):591-6 [PMID: 15820528]
  51. Eur Neuropsychopharmacol. 2014 Aug;24(8):1415-23 [PMID: 24846537]
  52. Neurosci Res. 2007 Nov;59(3):314-21 [PMID: 17868938]
  53. Neuropsychopharmacology. 1997 Sep;17(3):186-96 [PMID: 9272485]
  54. Psychopharmacology (Berl). 2014 Jan;231(1):269-81 [PMID: 23954911]
  55. J Pharmacol Exp Ther. 2011 Oct;339(1):99-105 [PMID: 21737536]
  56. Neuropsychopharmacology. 2009 Feb;34(3):662-71 [PMID: 18688210]
  57. Expert Opin Investig Drugs. 2011 Sep;20(9):1211-23 [PMID: 21740279]
  58. Psychopharmacology (Berl). 1995 Jan;117(1):74-81 [PMID: 7724705]
  59. Prog Neuropsychopharmacol Biol Psychiatry. 2013 Dec 2;47:62-8 [PMID: 23994047]
  60. Neuroimage. 2017 Feb 15;147:461-472 [PMID: 28011253]
  61. Behav Brain Res. 2011 Jun 1;219(2):273-9 [PMID: 21262266]
  62. Psychopharmacology (Berl). 1999 Sep;146(2):175-9 [PMID: 10525752]
  63. Brain Res. 1994 Jan 14;634(1):20-30 [PMID: 7908848]
  64. Neurochem Res. 2016 Aug;41(8):2049-64 [PMID: 27097547]
  65. Eur J Pharmacol. 1997 Feb 19;321(1):105-11 [PMID: 9083792]
  66. PLoS One. 2015 Mar 30;10(3):e0122363 [PMID: 25823005]
  67. Psychopharmacology (Berl). 1995 Nov;122(1):15-26 [PMID: 8711060]
  68. Eur J Pharmacol. 2001 Sep 28;428(1):81-6 [PMID: 11779040]
  69. Neuropsychopharmacology. 2012 Dec;37(13):2747-55 [PMID: 22871913]
  70. Neuropsychopharmacology. 1999 Apr;20(4):311-21 [PMID: 10088132]
  71. PLoS One. 2018 Sep 5;13(9):e0203589 [PMID: 30183783]
  72. Mov Disord. 2014 Aug;29(9):1125-33 [PMID: 24838395]
  73. Eur J Pharmacol. 1998 Jun 26;351(3):291-8 [PMID: 9721020]
  74. Brain Res. 2002 Aug 30;947(2):157-65 [PMID: 12176156]
  75. Eur J Pharmacol. 1997 Feb 26;321(2):163-9 [PMID: 9063684]
  76. Soc Cogn Affect Neurosci. 2009 Dec;4(4):417-22 [PMID: 20042432]
  77. Psychopharmacology (Berl). 2013 Jan;225(1):217-26 [PMID: 22842765]
  78. Behav Brain Res. 2012 Apr 1;229(1):153-9 [PMID: 22244923]
  79. Nucl Med Biol. 2016 Jan;43(1):81-88 [PMID: 26454782]
  80. Nat Neurosci. 2012 Sep;15(9):1245-54 [PMID: 22864611]
  81. Psychopharmacology (Berl). 2003 Jan;165(2):166-71 [PMID: 12417967]
  82. Psychopharmacology (Berl). 1993;113(2):157-66 [PMID: 7855176]
  83. Neuropsychopharmacology. 2001 Nov;25(5):633-41 [PMID: 11682246]
  84. Neuroimage. 2018 Aug 1;176:528-540 [PMID: 29723640]
  85. Neuropharmacology. 2011 Sep;61(4):770-7 [PMID: 21645528]
  86. Neuropsychopharmacology. 2006 Sep;31(9):1854-63 [PMID: 16319908]
  87. Pharmacogenomics J. 2012 Apr;12(2):147-55 [PMID: 21079646]
  88. Neuropharmacology. 2000 Apr 3;39(6):1053-63 [PMID: 10727716]

Grants

  1. 310030_156829/Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (Swiss National Science Foundation)

MeSH Term

Animals
Antipsychotic Agents
Haloperidol
Male
Rats
Receptor, Serotonin, 5-HT2A
Receptors, Dopamine D2
Tomography, Emission-Computed, Single-Photon

Chemicals

Antipsychotic Agents
Receptor, Serotonin, 5-HT2A
Receptors, Dopamine D2
Haloperidol

Word Cloud

Created with Highcharts 10.0.0haloperidolinduced5-HTRMDL-100907receptorefficacytreatment0DRdoseoccupancySPECTsuggestedside-effectprofileantipsychoticantagonistreversesideeffectsneurochemicalalonedoseslevelsdual-radiotracerin-vivoimagingPPIcatalepsyFinallychronicChronicdizocilpine5 mg/kg/day1 mg/kg/dayupregulationantagonismSeveralstudies5-HTblockademayprovidefavorablehypothesizedcombinedDalterationspotentializethuschronicallytreatedmaleMdr1aknock-outratsseveralcombinationsaturatingReceptorclinicallyrelevantvalidatedExperimentaltestsdizocilpine-disruptedprepulseinhibitionstartlereflexvacuouschewingmovementsperformedsecondscanassessedchangestreatmentsfaileddisruptionwhilstadministrationalongassociatedreversaleffectHaloperidolsignificantlyalleviated~50%co-treatmenteventlowsignificantstriatum40%nucleusaccumbens20%caudate-putamennucleireversedmoderate25 mg/kg/daydemonstratedfrontalcorticalregionsventraltegmentalareaOverallpartialcontributionagentsEffect5-HT2AD2/3adversebehavioralside-effectshaloperidol:studyrat

Similar Articles

Cited By