Apparent diffusion coefficient magnetic resonance imaging (ADC-MRI) in the axillary breast cancer lymph node metastasis detection: a narrative review.

Camilla De Cataldo, Federico Bruno, Pierpaolo Palumbo, Alessandra Di Sibio, Francesco Arrigoni, Alfredo Clemente, Alberto Bafile, Giovanni Luca Gravina, Salvatore Cappabianca, Antonio Barile, Alessandra Splendiani, Carlo Masciocchi, Ernesto Di Cesare
Author Information
  1. Camilla De Cataldo: Department of Biotechnology and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy.
  2. Federico Bruno: Department of Biotechnology and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy.
  3. Pierpaolo Palumbo: Department of Biotechnology and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy.
  4. Alessandra Di Sibio: Radiology Unit, San Salvatore Hospital, L'Aquila, Italy.
  5. Francesco Arrigoni: Department of Biotechnology and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy.
  6. Alfredo Clemente: Department of Precision Medicine, University of Campania "L. Vanvitelli", Naples, Italy.
  7. Alberto Bafile: Breast Unit, S. Salvatore Hospital, L'Aquila, Italy.
  8. Giovanni Luca Gravina: Department of Biotechnology and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy.
  9. Salvatore Cappabianca: Department of Precision Medicine, University of Campania "L. Vanvitelli", Naples, Italy.
  10. Antonio Barile: Department of Biotechnology and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy.
  11. Alessandra Splendiani: Department of Biotechnology and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy.
  12. Carlo Masciocchi: Department of Biotechnology and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy.
  13. Ernesto Di Cesare: Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy.

Abstract

The presence of axillary lymph nodes metastases in breast cancer is the most significant prognostic factor, with a great impact on morbidity, disease-related survival and management of oncological therapies; for this reason, adequate imaging evaluation is strictly necessary. Physical examination is not enough sensitive to assess breast cancer nodal status; axillary ultrasonography (US) is commonly used to detect suspected or occult nodal metastasis, providing exclusively morphological evaluation, with low sensitivity and positive predictive value. Currently, sentinel lymph node biopsy (SLNB) and/or axillary dissection are the milestone for the diagnostic assessment of axillary lymph node metastases, although its related morbidity. The impact of magnetic resonance imaging (MRI) in the detection of nodal metastases has been widely investigated, as it continues to represent the most promising imaging modality in the breast cancer management. In particular, diffusion-weighted imaging (DWI) and apparent diffusion coefficient (ADC) values represent additional reliable non-contrast sequences, able to improve the diagnostic accuracy of breast cancer MRI evaluation. Several studies largely demonstrated the usefulness of implementing DWI/ADC MRI in the characterization of breast lesions. Herein, in the light of our clinical experience, we perform a review of the literature regarding the diagnostic performance and accuracy of ADC value as potential pre-operative tool to define metastatic involvement of nodal structures in breast cancer patients. For the purpose of this review, PubMed, Web of Science, and SCOPUS electronic databases were searched with different combinations of "axillary lymph node", "breast cancer", "MRI/ADC", "breast MRI" keywords. All original articles, reviews and metanalyses were included.

Keywords

References

  1. Eur J Radiol. 2014 Dec;83(12):2144-2150 [PMID: 25305145]
  2. Radiol Med. 2019 Oct;124(10):1006-1017 [PMID: 31250270]
  3. Radiology. 2010 Oct;257(1):56-63 [PMID: 20851939]
  4. Gland Surg. 2018 Apr;7(2):200-206 [PMID: 29770313]
  5. Acad Radiol. 2008 Jul;15(7):867-72 [PMID: 18572122]
  6. Radiol Med. 2018 Oct;123(10):753-764 [PMID: 29869226]
  7. Radiology. 2012 Feb;262(2):425-34 [PMID: 22143924]
  8. Eur J Radiol. 2012 Oct;81(10):2602-12 [PMID: 22525596]
  9. Radiol Med. 2011 Mar;116(2):264-75 [PMID: 21076884]
  10. Eur J Radiol. 2012 Jan;81(1):178-82 [PMID: 20932700]
  11. J Ultrasound. 2018 Jun;21(2):105-118 [PMID: 29681007]
  12. J Magn Reson Imaging. 2011 Sep;34(3):557-62 [PMID: 21761468]
  13. Front Oncol. 2016 Oct 28;6:217 [PMID: 27840809]
  14. Radiol Med. 2019 Jan;124(1):50-57 [PMID: 30191445]
  15. Gland Surg. 2018 Apr;7(2):216-227 [PMID: 29770315]
  16. Radiol Med. 2019 Mar;124(3):218-233 [PMID: 30430385]
  17. J Comput Assist Tomogr. 2008 Sep-Oct;32(5):764-8 [PMID: 18830107]
  18. J Ultrasound. 2019 Mar;22(1):59-64 [PMID: 30284690]
  19. Clin Imaging. 2013 Jan-Feb;37(1):56-61 [PMID: 23206608]
  20. J Magn Reson Imaging. 2013 Oct;38(4):824-8 [PMID: 23440958]
  21. Radiol Med. 2018 Feb;123(2):105-116 [PMID: 28948489]
  22. J Natl Cancer Inst. 2006 May 3;98(9):599-609 [PMID: 16670385]
  23. Gland Surg. 2018 Aug;7(4):379-403 [PMID: 30175055]
  24. Pol J Radiol. 2019 Dec 22;84:e592-e597 [PMID: 32082458]
  25. CA Cancer J Clin. 2012 Jan-Feb;62(1):10-29 [PMID: 22237781]
  26. Asian Pac J Cancer Prev. 2014;15(19):8271-7 [PMID: 25339017]
  27. Radiol Med. 2018 Mar;123(3):168-173 [PMID: 29086382]
  28. Radiol Med. 2019 Feb;124(2):87-93 [PMID: 30276599]
  29. Neuroradiology. 2009 Mar;51(3):183-92 [PMID: 19137282]
  30. Gland Surg. 2018 Aug;7(4):366-370 [PMID: 30175053]
  31. Radiographics. 2011 Jul-Aug;31(4):1059-84 [PMID: 21768239]
  32. Radiol Med. 2019 Dec;124(12):1229-1237 [PMID: 31773458]
  33. J Magn Reson Imaging. 2008 Sep;28(3):714-9 [PMID: 18777531]
  34. J Ultrasound. 2019 Mar;22(1):85-94 [PMID: 30367356]
  35. Radiol Med. 2019 May;124(5):360-367 [PMID: 30607865]
  36. Gland Surg. 2019 Jun;8(3):258-270 [PMID: 31328105]
  37. Gland Surg. 2018 Jun;7(3):247-257 [PMID: 29998074]
  38. Acad Radiol. 2008 May;15(5):641-6 [PMID: 18423322]
  39. Tumori. 2012 May-Jun;98(3):320-3 [PMID: 22825507]
  40. Radiol Med. 2019 Dec;124(12):1220-1228 [PMID: 31422573]
  41. Radiol Med. 2019 Jul;124(7):682-692 [PMID: 30852793]
  42. Invest Radiol. 2011 Feb;46(2):94-105 [PMID: 21139507]
  43. Gland Surg. 2018 Jun;7(3):325-336 [PMID: 29998082]
  44. Radiol Med. 2018 Feb;123(2):125-134 [PMID: 28952018]
  45. Magn Reson Imaging. 2014 Dec;32(10):1230-6 [PMID: 25072504]
  46. Radiol Med. 2018 Jan;123(1):36-43 [PMID: 28914416]
  47. Gland Surg. 2019 Sep;8(Suppl 3):S142-S149 [PMID: 31559181]
  48. J Magn Reson Imaging. 2009 Feb;29(2):383-90 [PMID: 19161191]
  49. Radiol Med. 2018 Jan;123(1):1-12 [PMID: 28849324]
  50. Eur Radiol. 2009 Jun;19(6):1461-9 [PMID: 19172278]
  51. J Magn Reson Imaging. 2015 Sep;42(3):771-8 [PMID: 25556886]
  52. Radiol Med. 2019 Jun;124(6):546-554 [PMID: 30701385]
  53. Radiol Med. 2018 Mar;123(3):185-190 [PMID: 29086381]
  54. J Ultrasound. 2020 Mar;23(1):61-68 [PMID: 31175613]
  55. Magn Reson Imaging. 2005 Jun;23(5):685-9 [PMID: 16051044]
  56. Radiology. 2015 May;275(2):345-55 [PMID: 25513854]
  57. Gland Surg. 2019 Aug;8(4):399-406 [PMID: 31538065]
  58. Insights Imaging. 2019 Sep 4;10(1):82 [PMID: 31482392]
  59. Radiology. 2007 Mar;242(3):698-715 [PMID: 17244718]
  60. Radiol Med. 2018 Jul;123(7):498-506 [PMID: 29569216]
  61. AJR Am J Roentgenol. 2013 Feb;200(2):314-20 [PMID: 23345352]
  62. Radiol Med. 2018 Feb;123(2):91-97 [PMID: 28948442]
  63. Abdom Imaging. 2011 Feb;36(1):102-9 [PMID: 19953246]
  64. Radiol Med. 2019 Jul;124(7):581-587 [PMID: 30806920]
  65. J Magn Reson Imaging. 2011 Jan;33(1):102-9 [PMID: 21182127]
  66. Radiol Med. 2015 Oct;120(10):941-50 [PMID: 25743238]
  67. Radiol Med. 2018 Apr;123(4):296-304 [PMID: 29230679]
  68. Arch Surg. 2003 May;138(5):482-7; discussion 487-8 [PMID: 12742949]
  69. Radiol Med. 2019 Aug;124(8):736-744 [PMID: 30949891]
  70. AJNR Am J Neuroradiol. 2003 Sep;24(8):1627-34 [PMID: 13679283]
  71. J Magn Reson Imaging. 2012 Oct;36(4):858-64 [PMID: 22648570]
  72. Radiol Med. 2018 Jun;123(6):469-473 [PMID: 29374857]
  73. J Magn Reson Imaging. 2009 May;29(5):1080-4 [PMID: 19388115]
  74. Neuroradiology. 2003 Sep;45(9):592-7 [PMID: 12923668]
  75. Gland Surg. 2019 Dec;8(6):698-711 [PMID: 32042678]
  76. Radiol Med. 2019 Jan;124(1):19-26 [PMID: 30196522]
  77. Radiol Med. 2019 Apr;124(4):241-242 [PMID: 30707375]
  78. Acta Radiol. 2014 Oct;55(8):909-16 [PMID: 24234236]
  79. Radiol Med. 2018 Mar;123(3):191-201 [PMID: 29119524]
  80. Radiol Med. 2018 Nov;123(11):809-817 [PMID: 29974332]
  81. J Magn Reson Imaging. 2020 Jul;52(1):70-90 [PMID: 31520518]
  82. Radiol Med. 2018 Mar;123(3):209-216 [PMID: 29058233]
  83. Radiol Med. 2018 Aug;123(8):618-619 [PMID: 29671206]
  84. Radiol Med. 2019 Apr;124(4):309-314 [PMID: 30547358]

Word Cloud

Created with Highcharts 10.0.0breastcancerimagingaxillarylymphmetastasesnodalevaluationnodediagnosticmagneticresonanceMRIdiffusioncoefficientreviewnodesimpactmorbiditymanagementmetastasisvaluerepresentdiffusion-weightedDWIapparentADCaccuracy"breastADC-MRIpresencesignificantprognosticfactorgreatdisease-relatedsurvivaloncologicaltherapiesreasonadequatestrictlynecessaryPhysicalexaminationenoughsensitiveassessstatusultrasonographyUScommonlyuseddetectsuspectedoccultprovidingexclusivelymorphologicallowsensitivitypositivepredictiveCurrentlysentinelbiopsySLNBand/ordissectionmilestoneassessmentalthoughrelateddetectionwidelyinvestigatedcontinuespromisingmodalityparticularvaluesadditionalreliablenon-contrastsequencesableimproveSeveralstudieslargelydemonstratedusefulnessimplementingDWI/ADCcharacterizationlesionsHereinlightclinicalexperienceperformliteratureregardingperformancepotentialpre-operativetooldefinemetastaticinvolvementstructurespatientspurposePubMedWebScienceSCOPUSelectronicdatabasessearcheddifferentcombinations"axillarynode"cancer""MRI/ADC"MRI"keywordsoriginalarticlesreviewsmetanalysesincludedApparentdetection:narrativeBreast

Similar Articles

Cited By