Obesity as a Neuroendocrine Reprogramming.

Abdelaziz Ghanemi, Mayumi Yoshioka, Jonny St-Amand
Author Information
  1. Abdelaziz Ghanemi: Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec, QC G1V 0A6, Canada. ORCID
  2. Mayumi Yoshioka: Functional Genomics Laboratory, Endocrinology and Nephrology Axis, CHU de Québec-Université Laval Research Center, 2705 Boul. Laurier, Québec, QC G1V 4G2, Canada. ORCID
  3. Jonny St-Amand: Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec, QC G1V 0A6, Canada. ORCID

Abstract

Obesity represents a health problem resulting from a broken balance between energy intake and energy expenditure leading to excess fat accumulation. Elucidating molecular and cellular pathways beyond the establishment of obesity remains the main challenge facing the progress in understanding obesity and developing its treatment. Within this context, this opinion presents obesity as a reprogrammer of selected neurological and endocrine patterns in order to adapt to the new metabolic imbalance represented by obesity status. Indeed, during obesity development, the energy balance is shifted towards increased energy storage, mainly but not only, in adipose tissues. These new metabolic patterns that obesity represents require changes at different cellular and metabolic levels under the control of the neuroendocrine systems through different regulatory signals. Therefore, there are neuroendocrine changes involving diverse mechanisms, such as neuroplasticity and hormonal sensitivity, and, thus, the modifications in the neuroendocrine systems in terms of metabolic functions fit with the changes accompanying the obesity-induced metabolic phenotype. Such endocrine reprogramming can explain why it is challenging to lose weight once obesity is established, because it would mean to go against new endogenous metabolic references resulting from a new "setting" of energy metabolism-related neuroendocrine regulation. Investigating the concepts surrounding the classification of obesity as a neuroendocrine reprogrammer could optimize our understanding of the underlying mechanisms and, importantly, reveal some of the mysteries surrounding the molecular pathogenesis of obesity, as well as focusing the pharmacological search for antiobesity therapies on both neurobiology synaptic plasticity and hormonal interaction sensitivity.

Keywords

References

  1. J Sci Med Sport. 2020 Nov;23(11):1068-1073 [PMID: 32546435]
  2. Int J Biochem Cell Biol. 2019 Dec;117:105627 [PMID: 31589923]
  3. J Clin Med. 2018 Nov 20;7(11): [PMID: 30463389]
  4. Am J Physiol Endocrinol Metab. 2015 Oct 15;309(8):E759-66 [PMID: 26330345]
  5. Biochim Biophys Acta Proteins Proteom. 2020 Sep;1868(9):140448 [PMID: 32445798]
  6. Neuropsychopharmacology. 2018 Dec;43(13):2506-2513 [PMID: 30188514]
  7. Lancet Diabetes Endocrinol. 2019 Sep;7(9):715-725 [PMID: 31301983]
  8. Nutrients. 2019 Nov 08;11(11): [PMID: 31717265]
  9. Life Sci. 2018 Dec 15;215:190-197 [PMID: 30414432]
  10. Br J Pharmacol. 2012 Jul;166(5):1586-99 [PMID: 22519295]
  11. Biochem Cell Biol. 2019 Apr;97(2):148-157 [PMID: 30253108]
  12. Adv Clin Exp Med. 2019 Dec;28(12):1599-1607 [PMID: 31766080]
  13. J Comp Physiol B. 2015 Apr;185(3):265-79 [PMID: 25542162]
  14. J Clin Endocrinol Metab. 2012 Jul;97(7):2489-96 [PMID: 22535969]
  15. J Neural Transm (Vienna). 2019 Apr;126(4):481-516 [PMID: 30569209]
  16. Eur J Intern Med. 2018 Sep;55:20-22 [PMID: 29807850]
  17. Front Biosci (Landmark Ed). 2018 Jan 1;23:811-836 [PMID: 28930574]
  18. Nat Metab. 2020 Sep;2(9):817-828 [PMID: 32747792]
  19. Obesity (Silver Spring). 2013 Jul;21(7):1389-95 [PMID: 23754443]
  20. Nutrients. 2018 Apr 12;10(4): [PMID: 29649120]
  21. Cell Metab. 2018 Apr 3;27(4):740-756 [PMID: 29617641]
  22. Biochemistry (Mosc). 2017 Mar;82(3):237-242 [PMID: 28320264]
  23. Nutr Metab (Lond). 2017 Oct 23;14:66 [PMID: 29075307]
  24. Nutrition. 1996 Jan;12(1):65-6 [PMID: 8838845]
  25. Life (Basel). 2021 Jan 08;11(1): [PMID: 33435573]
  26. Physiol Behav. 2021 Jan 1;228:113208 [PMID: 33068562]
  27. Genes (Basel). 2020 Jul 31;11(8): [PMID: 32752100]
  28. Clin Chem. 2018 Jan;64(1):64-71 [PMID: 29158252]
  29. J Med Chem. 2015 Sep 24;58(18):7370-80 [PMID: 26308095]
  30. Peptides. 2018 Feb;100:236-242 [PMID: 29412824]
  31. Nature. 2019 May;569(7755):229-235 [PMID: 31043739]
  32. Animals (Basel). 2020 Dec 09;10(12): [PMID: 33317011]
  33. Mech Ageing Dev. 2020 Sep;190:111294 [PMID: 32585235]
  34. Mol Cell Biochem. 2018 May;442(1-2):47-58 [PMID: 28918505]

MeSH Term

Adipose Tissue
Energy Intake
Energy Metabolism
Humans
Neurosecretory Systems
Obesity

Word Cloud

Created with Highcharts 10.0.0obesitymetabolicneuroendocrineenergynewchangesObesityrepresentsresultingbalancemolecularcellularunderstandingreprogrammerendocrinepatternsdifferentsystemsmechanismshormonalsensitivityreprogrammingsurroundinghealthproblembrokenintakeexpenditureleadingexcessfataccumulationElucidatingpathwaysbeyondestablishmentremainsmainchallengefacingprogressdevelopingtreatmentWithincontextopinionpresentsselectedneurologicalorderadaptimbalancerepresentedstatusIndeeddevelopmentshiftedtowardsincreasedstoragemainlyadiposetissuesrequirelevelscontrolregulatorysignalsThereforeinvolvingdiverseneuroplasticitythusmodificationstermsfunctionsfitaccompanyingobesity-inducedphenotypecanexplainchallengingloseweightestablishedmeangoendogenousreferences"setting"metabolism-relatedregulationInvestigatingconceptsclassificationoptimizeunderlyingimportantlyrevealmysteriespathogenesiswellfocusingpharmacologicalsearchantiobesitytherapiesneurobiologysynapticplasticityinteractionNeuroendocrineReprogrammingendocrinologyneurology

Similar Articles

Cited By