A Network Immuno-Epidemiological HIV Model.

Churni Gupta, Necibe Tuncer, Maia Martcheva
Author Information
  1. Churni Gupta: Department of Mathematics, University of Florida, Gainesville, USA. churnibidisha@ufl.edu. ORCID
  2. Necibe Tuncer: Department of Mathematical Sciences, Florida Atlantic University, Boca Raton, USA. ntuncer@fau.edu.
  3. Maia Martcheva: Department of Mathematics, University of Florida, Gainesville, USA. maia@ufl.edu.

Abstract

In this paper we formulate a multi-scale nested immuno-epidemiological model of HIV on complex networks. The system is described by ordinary differential equations coupled with a partial differential equation. First, we prove the existence and uniqueness of the immunological model and then establish the well-posedness of the multi-scale model. We derive an explicit expression of the basic reproduction number [Formula: see text] of the immuno-epidemiological model. The system has a disease-free equilibrium and an endemic equilibrium. The disease-free equilibrium is globally stable when [Formula: see text] and unstable when [Formula: see text]. Numerical simulations suggest that [Formula: see text] increases as the number of nodes in the network increases. Further, we find that for a scale-free network the number of infected individuals at equilibrium is a hump-like function of the within-host reproduction number; however, the dependence becomes monotone if the network has predominantly low connectivity nodes or high connectivity nodes.

Keywords

References

  1. Acevedo MA, Prosper O, Lopiano K, Nick Ruktanonchai T, Caughlin T, Martcheva M, Osenberg CW, Smith DL (2015) Spatial heterogeneity, host movement and mosquito-borne disease transmission. PLoS ONE 10(6):e0127552 [DOI: 10.1371/journal.pone.0127552]
  2. Cuadros DF, Garcia-Ramos G (2012) Variable effect of co-infection on the HIV infectivity: within-host dynamics and epidemiological significance. Theor Biol Med Model. https://doi.org/10.1186/1742-4682-9-9 [DOI: 10.1186/1742-4682-9-9]
  3. De Leenheer P, Smith H (2003) Virus dynamics: a global analysis. SIAM J Appl Math 63(4):1313–1327 [DOI: 10.1137/S0036139902406905]
  4. Doekes HM, Fraser C, Lythgoe KA (2017) Effect of the latent reservoir on the evolution of HIV at the within- and between-host levels. PLoS Comput Biol 13(1):1–27. https://doi.org/10.1371/journal.pcbi.1005228 [DOI: 10.1371/journal.pcbi.1005228]
  5. Gilchrist MA, Coombs D (2006) Evolution of virulence: interdependence, constraints, and selection using nested models. Theor Popul Biol 69:145–153 [DOI: 10.1016/j.tpb.2005.07.002]
  6. Gilchrist M, Sasaki A (2002) Modeling host-parasite coevolution: a nested approach based on mechanistic models. J Theor Biol 218:289–308 [DOI: 10.1006/jtbi.2002.3076]
  7. Gulbudak H, Cannataro V, Tuncer N, Martcheva M (2017) Vector-borne pathogen and host evolution in a structured immuno-epidemiological system. Bull Math Biol 79:325–355 [DOI: 10.1007/s11538-016-0239-0]
  8. Gumel A, Mccluskey C, Driessche P (2006) Mathematical study of a staged-progression HIV model with imperfect vaccine. Bull Math Biol 68:2105–28. https://doi.org/10.1007/s11538-006-9095-7 [DOI: 10.1007/s11538-006-9095-7]
  9. https://www.unaids.org/en/resources/fact-sheet
  10. Huang G, Liu X, Takeuchi Y (2012) Lyapunov functions and global stability for age-structured HIV infection model. SIAM J Appl Math 72(1):25–38 [DOI: 10.1137/110826588]
  11. Jin Z, Sun G, Zhu H (2014) Epidemic models for complex networks with demographics. Math Biosci Eng 11:1295–1317 [DOI: 10.3934/mbe.2014.11.1295]
  12. Keeling MJ, Eames KTD (2005) Networks and epidemic models. J R Soc Interface 2:295–307 [DOI: 10.1098/rsif.2005.0051]
  13. Li C-H, Tsai C-C, Yang S-Y (2014) Analysis of epidemic spreading of an SIRS model in complex heterogeneous networks. Commun Nonlinear Sci Numer Simul 19:1042–1054. https://doi.org/10.1016/j.cnsns.2013.08.033 [DOI: 10.1016/j.cnsns.2013.08.033]
  14. Lythgoe KA, Pellis L, Fraser C (2013) Is HIV short-sighted? Insights from a multistrain nested model. Evolution 67(10):2769–2782. https://doi.org/10.1111/evo.12166 [DOI: 10.1111/evo.12166]
  15. Martcheva M, Li XZ (2013) Linking immunological and epidemiological dynamics of HIV: The case of super-infection. J Biol Dyn 7(1):161–182 [DOI: 10.1080/17513758.2013.820358]
  16. Metzger VT, Lloyd-Smith JO, Weinberger LS (2011) Autonomous targeting of infectious superspreaders using engineered transmissible therapies. PLoS Comput Biol 7(3):1–12. https://doi.org/10.1371/journal.pcbi.1002015 [DOI: 10.1371/journal.pcbi.1002015]
  17. Nowak M, May R (2000) Virus dynamics: mathematical principles of immunology and virology. Oxford University Press, Oxford
  18. Numfor E, Bhattacharya S, Lenhart S, Martcheva M (2014) Optimal control in coupled within-host and between-host models. Math Model Nat Phenom 9:171–203. https://doi.org/10.1051/mmnp/20149411 [DOI: 10.1051/mmnp/20149411]
  19. Numfor E, Bhattacharya S, Lenhart S, Martcheva M (2016) Optimal control in multi-group coupled within-host and between-host models. Electron J Differ Equ. Conf. 23:87–117
  20. Pastor-Satorras R, Vespignani A (2001a) Epidemic spreading in scale-free networks. Phys Rev Lett 86:3200–3. https://doi.org/10.1103/PhysRevLett.86.3200 [DOI: 10.1103/PhysRevLett.86.3200]
  21. Pastor-Satorras R, Vespignani A (2001b) Epidemic dynamics and endemic states in complex networks. Phys Rev E Stat Nonlinear Soft Matter Phys 63:066117. https://doi.org/10.1103/PhysRevE.63.066117 [DOI: 10.1103/PhysRevE.63.066117]
  22. Perelson A, Nelson P (1999) Mathematical analysis of HIV-I: dynamics in vivo. SIAM Rev 41(1):3–44 [DOI: 10.1137/S0036144598335107]
  23. Rong L, Feng Z, Perelson A (2007) Mathematical analysis of age-structured HIV-1 dynamics with combination antiretroviral therapy. SIAM J Appl Math 67:731–756. https://doi.org/10.1137/060663945 [DOI: 10.1137/060663945]
  24. Rotenberg R (2009) HIV transmission networks. Curr Opin HIV/AIDS 4:260–265 [DOI: 10.1097/COH.0b013e32832c7cfc]
  25. Ruth MA, Blower SM (1993) Imperfect vaccines and herd immunity to HIV 253. Proc R Soc Lond B. https://doi.org/10.1098/rspb.1993.0075 [DOI: 10.1098/rspb.1993.0075]
  26. Saenz RA, Bonhoeffer S (2013) Nested model reveals potential amplification of an HIV epidemic due to drug resistance. Epidemics 5(1):34–43 [DOI: 10.1016/j.epidem.2012.11.002]
  27. Shen M, Xiao Y, Rong L (2015) Global stability of an infection-age structured HIV-1 model linking within-host and between-host dynamics. Math Biosci 263:37–50. https://doi.org/10.1016/j.mbs.2015.02.003 [DOI: 10.1016/j.mbs.2015.02.003]
  28. Thieme HR (2003) Mathematics in population biology. Oxford University Press, Oxford [DOI: 10.1515/9780691187655]
  29. Thieme H, Castillo-Chavez C (1993) How may infection-age-dependent infectivity affect the dynamics of HIV/AIDS? SIAM J Appl Math 53(5):1447–1479 [DOI: 10.1137/0153068]
  30. Vieira IT, Cheng RCH, Harper PR et al (2010) Small world network models of the dynamics of HIV infection. Ann Oper Res 178:173–200. https://doi.org/10.1007/s10479-009-0571-y [DOI: 10.1007/s10479-009-0571-y]
  31. Wang Y, Jin J, Yang Z, Zhang Z, Zhou T, Sun G (2012) Global analysis of an SIS model with an infective vector on complex networks. Nonlinear Anal Real World Appl 13:543–557 [DOI: 10.1016/j.nonrwa.2011.07.033]
  32. Wang Y, Cao J, Alofi A, Al Mazrooei A, Elaiw A (2015) Revisiting node-based SIR models in complex networks with degree correlations. Phys A Stat Mech Appl. https://doi.org/10.1016/j.physa.2015.05.103 [DOI: 10.1016/j.physa.2015.05.103]
  33. Yang J-Y, Chen Y (2017) Effect of infection age on an SIR epidemic model with demography on complex networks. Phys A Stat Mech Appl. https://doi.org/10.1016/j.physa.2017.03.006 [DOI: 10.1016/j.physa.2017.03.006]
  34. Yang J, Chen Y, Xu F (2016) Effect of infection age on an SIS epidemic model on complex networks. J Math Biol 73:1227–1249 [DOI: 10.1007/s00285-016-0991-7]
  35. Zhang J, Zhen J (2011) The analysis of an epidemic model on networks. Appl Math Comput 217:7053–7064

MeSH Term

HIV Infections
Humans
Mathematical Concepts
Models, Biological

Word Cloud

Created with Highcharts 10.0.0modelnumber[Formula:seetext]equilibriumHIVreproductionnodesnetworkmulti-scaleimmuno-epidemiologicalsystemdifferentialdisease-freeincreasesconnectivityNetworkpaperformulatenestedcomplexnetworksdescribedordinaryequationscoupledpartialequationFirstproveexistenceuniquenessimmunologicalestablishwell-posednessderiveexplicitexpressionbasicendemicgloballystableunstableNumericalsimulationssuggestfindscale-freeinfectedindividualshump-likefunctionwithin-hosthoweverdependencebecomesmonotonepredominantlylowhighImmuno-EpidemiologicalModelAgestructuredBasicEpidemic

Similar Articles

Cited By