Deep learning powers cancer diagnosis in digital pathology.

Yunjie He, Hong Zhao, Stephen T C Wong
Author Information
  1. Yunjie He: Systems Medicine and Bioengineering Department, Houston Methodist Cancer Center, Houston, TX, 77030, USA.
  2. Hong Zhao: Systems Medicine and Bioengineering Department, Houston Methodist Cancer Center, Houston, TX, 77030, USA. Electronic address: hzhao@houstonmethodist.org.
  3. Stephen T C Wong: Systems Medicine and Bioengineering Department, Houston Methodist Cancer Center, Houston, TX, 77030, USA. Electronic address: stwong@houstonmethodist.org.

Abstract

Technological innovation has accelerated the pathological diagnostic process for cancer, especially in digitizing histopathology slides and incorporating deep learning-based approaches to mine the subvisual morphometric phenotypes for improving pathology diagnosis. In this perspective paper, we provide an overview on major deep learning approaches for digital pathology and discuss challenges and opportunities of such approaches to aid cancer diagnosis in digital pathology. In particular, the emerging graph neural network may further improve the performance and interpretability of deep learning in digital pathology.

Keywords

References

  1. IEEE Trans Pattern Anal Mach Intell. 2017 Jun;39(6):1137-1149 [PMID: 27295650]
  2. IEEE Trans Neural Netw Learn Syst. 2021 Jan;32(1):4-24 [PMID: 32217482]
  3. IEEE Trans Pattern Anal Mach Intell. 2021 Dec;43(12):4217-4228 [PMID: 32012000]
  4. Front Med (Lausanne). 2019 Oct 01;6:185 [PMID: 31632973]
  5. Science. 2006 Jul 28;313(5786):504-7 [PMID: 16873662]
  6. J Clin Med. 2020 Mar 14;9(3): [PMID: 32183257]
  7. Am J Surg Pathol. 2018 Jan;42(1):39-52 [PMID: 28961557]
  8. J Pathol Inform. 2016 Jul 26;7:29 [PMID: 27563488]
  9. IEEE Trans Neural Netw Learn Syst. 2021 Feb;32(2):604-624 [PMID: 32324570]
  10. Am J Surg Pathol. 2018 Dec;42(12):1636-1646 [PMID: 30312179]
  11. NPJ Digit Med. 2019 Jun 7;2:48 [PMID: 31304394]
  12. Artif Intell Med. 2001 Aug;23(1):89-109 [PMID: 11470218]
  13. J Pathol Inform. 2013 May 30;4:8 [PMID: 23858383]
  14. Front Med (Lausanne). 2019 Nov 22;6:264 [PMID: 31824952]
  15. Cancer Commun (Lond). 2020 Apr;40(4):154-166 [PMID: 32277744]
  16. Lancet Oncol. 2019 May;20(5):e253-e261 [PMID: 31044723]
  17. Lab Invest. 2019 Jul;99(7):1019-1029 [PMID: 30770886]
  18. Nature. 2017 Oct 18;550(7676):354-359 [PMID: 29052630]
  19. Bull Math Biol. 1990;52(1-2):99-115; discussion 73-97 [PMID: 2185863]
  20. Kidney Int. 2020 Jul;98(1):65-75 [PMID: 32475607]
  21. Psychol Rev. 1958 Nov;65(6):386-408 [PMID: 13602029]
  22. Neural Comput. 1997 Nov 15;9(8):1735-80 [PMID: 9377276]
  23. Nat Rev Clin Oncol. 2019 Nov;16(11):703-715 [PMID: 31399699]
  24. J Intern Med. 2020 Jul;288(1):62-81 [PMID: 32128929]

Grants

  1. R01 CA238727/NCI NIH HHS
  2. R01 CA251710/NCI NIH HHS
  3. U01 CA253553/NCI NIH HHS

MeSH Term

Artificial Intelligence
Deep Learning
Humans
Neoplasms
Neural Networks, Computer

Word Cloud

Created with Highcharts 10.0.0pathologycancerdeepdiagnosislearningdigitalapproachesgraphneuralTechnologicalinnovationacceleratedpathologicaldiagnosticprocessespeciallydigitizinghistopathologyslidesincorporatinglearning-basedminesubvisualmorphometricphenotypesimprovingperspectivepaperprovideoverviewmajordiscusschallengesopportunitiesaidparticularemergingnetworkmayimproveperformanceinterpretabilityDeeppowersAIDigitalnetworksmicroscopyimage

Similar Articles

Cited By (11)