Deep Learning applications for COVID-19.

Connor Shorten, Taghi M Khoshgoftaar, Borko Furht
Author Information
  1. Connor Shorten: Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431 USA. ORCID
  2. Taghi M Khoshgoftaar: Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431 USA.
  3. Borko Furht: Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431 USA.

Abstract

This survey explores how Deep Learning has battled the COVID-19 pandemic and provides directions for future research on COVID-19. We cover Deep Learning applications in Natural Language Processing, Computer Vision, Life Sciences, and Epidemiology. We describe how each of these applications vary with the availability of big data and how learning tasks are constructed. We begin by evaluating the current state of Deep Learning and conclude with key limitations of Deep Learning for COVID-19 applications. These limitations include Interpretability, Generalization Metrics, Learning from Limited Labeled Data, and Data Privacy. Natural Language Processing applications include mining COVID-19 research for Information Retrieval and Question Answering, as well as Misinformation Detection, and Public Sentiment Analysis. Computer Vision applications cover Medical Image Analysis, Ambient Intelligence, and Vision-based Robotics. Within Life Sciences, our survey looks at how Deep Learning can be applied to Precision Diagnostics, Protein Structure Prediction, and Drug Repurposing. Deep Learning has additionally been utilized in Spread Forecasting for Epidemiology. Our literature review has found many examples of Deep Learning systems to fight COVID-19. We hope that this survey will help accelerate the use of Deep Learning for COVID-19 research.

Keywords

References

  1. BMJ. 2016 May 03;353:i2139 [PMID: 27143499]
  2. J Med Syst. 2020 Jul 1;44(8):135 [PMID: 32607737]
  3. Front Artif Intell. 2023 Mar 14;6:1023281 [PMID: 36998290]
  4. Nat Rev Genet. 2011 Jan;12(1):56-68 [PMID: 21164525]
  5. Artif Intell Med. 2018 Aug;90:1-14 [PMID: 30017512]
  6. Ann Hum Biol. 2013 Nov-Dec;40(6):463-71 [PMID: 23829164]
  7. NPJ Digit Med. 2020 Sep 14;3:119 [PMID: 33015372]
  8. Sci Data. 2016 May 24;3:160035 [PMID: 27219127]
  9. IEEE Trans Artif Intell. 2020 Sep 02;1(1):85-103 [PMID: 37982070]
  10. Proteins. 2019 Dec;87(12):1011-1020 [PMID: 31589781]
  11. Lancet. 2020 Feb 15;395(10223):e30-e31 [PMID: 32032529]
  12. J Proteome Res. 2020 Nov 6;19(11):4624-4636 [PMID: 32654489]
  13. Adv Neural Inf Process Syst. 2019 Dec;32:9689-9701 [PMID: 33390682]
  14. Science. 2003 Apr 11;300(5617):286-90 [PMID: 12690187]
  15. PLoS Comput Biol. 2010 Jun 24;6(6):e1000807 [PMID: 20589078]
  16. Nature. 2016 Jan 28;529(7587):484-9 [PMID: 26819042]
  17. Nat Med. 2020 Sep;26(9):1318-1320 [PMID: 32908274]
  18. Lancet Digit Health. 2020 Dec;2(12):e667-e676 [PMID: 32984792]
  19. J Am Med Inform Assoc. 2020 Jul 1;27(9):1431-1436 [PMID: 32365190]
  20. NPJ Digit Med. 2021 Apr 12;4(1):68 [PMID: 33846532]
  21. Patterns (N Y). 2020 Nov 12;1(9):100142 [PMID: 33336200]
  22. Bioinformatics. 2020 Feb 15;36(4):1234-1240 [PMID: 31501885]
  23. Microbiol Resour Announc. 2020 Mar 12;9(11): [PMID: 32165386]
  24. Lancet Infect Dis. 2020 Apr;20(4):400-402 [PMID: 32113509]
  25. Nature. 2020 Jan;577(7792):706-710 [PMID: 31942072]
  26. Eur Radiol. 2021 Aug;31(8):6096-6104 [PMID: 33629156]
  27. Chaos Solitons Fractals. 2020 Nov;140:110121 [PMID: 32834633]
  28. Sci Rep. 2020 Nov 11;10(1):19549 [PMID: 33177550]
  29. Pattern Recognit Lett. 2020 Oct;138:638-643 [PMID: 32958971]
  30. Nat Med. 2020 Aug;26(8):1224-1228 [PMID: 32427924]
  31. J Big Data. 2021;8(1):101 [PMID: 34306963]
  32. ACS Nano. 2023 Jan 10;17(1):697-710 [PMID: 36541630]
  33. Nature. 2020 Sep;585(7824):193-202 [PMID: 32908264]
  34. Nucleic Acids Res. 2017 Jan 4;45(D1):D972-D978 [PMID: 27651457]

Word Cloud

Created with Highcharts 10.0.0LearningDeepCOVID-19applicationssurveyresearchNaturalLanguageProcessingComputerVisionLifeSciencesEpidemiologycoverlimitationsincludeDataAnalysisexploresbattledpandemicprovidesdirectionsfuturedescribevaryavailabilitybigdatalearningtasksconstructedbeginevaluatingcurrentstateconcludekeyInterpretabilityGeneralizationMetricsLimitedLabeledPrivacyminingInformationRetrievalQuestionAnsweringwellMisinformationDetectionPublicSentimentMedicalImageAmbientIntelligenceVision-basedRoboticsWithinlookscanappliedPrecisionDiagnosticsProteinStructurePredictionDrugRepurposingadditionallyutilizedSpreadForecastingliteraturereviewfoundmanyexamplessystemsfighthopewillhelpaccelerateuse

Similar Articles

Cited By (77)