Targeting the Ubiquitin Signaling Cascade in Tumor Microenvironment for Cancer Therapy.

Qi Liu, Bayonle Aminu, Olivia Roscow, Wei Zhang
Author Information
  1. Qi Liu: Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, 50 Stone Rd E, Guelph, ON N1G2W1, Canada.
  2. Bayonle Aminu: Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, 50 Stone Rd E, Guelph, ON N1G2W1, Canada.
  3. Olivia Roscow: Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, 50 Stone Rd E, Guelph, ON N1G2W1, Canada.
  4. Wei Zhang: Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, 50 Stone Rd E, Guelph, ON N1G2W1, Canada.

Abstract

Tumor microenvironments are composed of a myriad of elements, both cellular (immune cells, cancer-associated fibroblasts, mesenchymal stem cells, etc.) and non-cellular (extracellular matrix, cytokines, growth factors, etc.), which collectively provide a permissive environment enabling tumor progression. In this review, we focused on the regulation of tumor microenvironment through ubiquitination. Ubiquitination is a reversible protein post-translational modification that regulates various key biological processes, whereby ubiquitin is attached to substrates through a catalytic cascade coordinated by multiple enzymes, including E1 ubiquitin-activating enzymes, E2 ubiquitin-conjugating enzymes and E3 ubiquitin ligases. In contrast, ubiquitin can be removed by deubiquitinases in the process of deubiquitination. Here, we discuss the roles of E3 ligases and deubiquitinases as modulators of both cellular and non-cellular components in tumor microenvironment, providing potential therapeutic targets for cancer therapy. Finally, we introduced several emerging technologies that can be utilized to develop effective therapeutic agents for targeting tumor microenvironment.

Keywords

References

  1. Cell Death Differ. 2018 Aug;25(8):1473-1485 [PMID: 29396548]
  2. ACS Chem Biol. 2017 Apr 21;12(4):892-898 [PMID: 28263557]
  3. J Clin Oncol. 2015 Sep 1;33(25):2803-11 [PMID: 26195701]
  4. Nature. 2004 Aug 5;430(7000):694-9 [PMID: 15258597]
  5. Int J Hematol. 2016 Sep;104(3):293-9 [PMID: 27460676]
  6. Hypertens Res. 2020 Mar;43(3):168-177 [PMID: 31700166]
  7. Proc Natl Acad Sci U S A. 2013 Jul 9;110(28):11379-84 [PMID: 23801757]
  8. Biochem Biophys Res Commun. 2011 Apr 15;407(3):557-61 [PMID: 21419099]
  9. Prog Med Chem. 2016;55:149-92 [PMID: 26852935]
  10. Int J Biol Sci. 2018 Nov 13;14(14):2083-2093 [PMID: 30585271]
  11. Cell Mol Immunol. 2016 Nov;13(6):722-728 [PMID: 27063466]
  12. Immunotherapy. 2017 Mar;9(3):289-302 [PMID: 28231720]
  13. Nature. 2014 Aug 7;512(7512):49-53 [PMID: 25043012]
  14. J Biol Chem. 2014 Aug 15;289(33):22785-97 [PMID: 24982421]
  15. Angiogenesis. 2011 Sep;14(3):255-66 [PMID: 21484514]
  16. Biomedicines. 2018 Mar 19;6(1): [PMID: 29562667]
  17. ChemMedChem. 2010 Apr 6;5(4):552-8 [PMID: 20186914]
  18. J Cell Biochem. 2017 Jul;118(7):1733-1740 [PMID: 27935098]
  19. J Cancer Res Ther. 2016 Jan-Mar;12(1):28-35 [PMID: 27072206]
  20. Proc Natl Acad Sci U S A. 2016 Aug 2;113(31):8705-10 [PMID: 27436899]
  21. J Clin Invest. 2017 Aug 1;127(8):2982-2997 [PMID: 28691927]
  22. Nature. 2014 Sep 18;513(7518):388-393 [PMID: 25043029]
  23. EMBO Rep. 2014 Jan;15(1):77-85 [PMID: 24378640]
  24. Bioorg Med Chem Lett. 2008 Nov 15;18(22):5904-8 [PMID: 18752944]
  25. J Cell Biochem. 2010 Dec 1;111(5):1169-78 [PMID: 20717917]
  26. Cancer Res. 2017 Apr 15;77(8):2090-2101 [PMID: 28330927]
  27. J Mol Biol. 2017 Nov 10;429(22):3546-3560 [PMID: 28587923]
  28. Cancer Lett. 2015 Nov 1;368(1):7-13 [PMID: 26276713]
  29. Cell Cycle. 2007 Mar 15;6(6):656-9 [PMID: 17361105]
  30. Int J Oncol. 2014 Feb;44(2):393-402 [PMID: 24316875]
  31. Nat Commun. 2017 Jan 09;8:13923 [PMID: 28067227]
  32. Matrix Biol. 2017 May;59:3-22 [PMID: 27746219]
  33. Aging (Albany NY). 2020 Jan 4;12(1):8-34 [PMID: 31901900]
  34. Blood. 2012 Feb 2;119(5):1292-301 [PMID: 22144179]
  35. Nat Med. 2013 Nov;19(11):1423-37 [PMID: 24202395]
  36. Cancer Cell. 2005 Jun;7(6):547-59 [PMID: 15950904]
  37. J Biol Chem. 2015 Aug 28;290(35):21244-51 [PMID: 26187467]
  38. Nat Chem Biol. 2013 Jan;9(1):51-8 [PMID: 23178935]
  39. Mol Cell Oncol. 2017 Aug 24;4(6):e1364212 [PMID: 29209651]
  40. FEBS J. 2020 Aug 31;: [PMID: 32867007]
  41. Cell Death Differ. 2013 Jan;20(1):21-30 [PMID: 22722335]
  42. J Biol Chem. 2010 Jul 30;285(31):23647-54 [PMID: 20507985]
  43. Science. 2017 Mar 17;355(6330):1163-1167 [PMID: 28302825]
  44. Leukemia. 2012 Nov;26(11):2326-35 [PMID: 22552008]
  45. Int J Cancer. 2016 Mar 1;138(5):1058-66 [PMID: 25784597]
  46. Nature. 2017 Sep 7;549(7670):106-110 [PMID: 28813410]
  47. Cell Cycle. 2004 Nov;3(11):1345-7 [PMID: 15492505]
  48. Nat Cell Biol. 2017 Oct;19(10):1260-1273 [PMID: 28892081]
  49. Drug Discov Today Technol. 2019 Apr;31:15-27 [PMID: 31200855]
  50. Mol Cell. 2019 Nov 7;76(3):359-370 [PMID: 31668929]
  51. Nat Commun. 2015 Jan 23;6:6153 [PMID: 25615526]
  52. Cancer Cell Int. 2019 Mar 13;19:56 [PMID: 30911287]
  53. Mol Cancer Res. 2015 Dec;13(12):1523-32 [PMID: 26464214]
  54. Mol Cancer. 2019 Apr 3;18(1):77 [PMID: 30943988]
  55. Nat Commun. 2019 Mar 4;10(1):1034 [PMID: 30833558]
  56. Nat Rev Mol Cell Biol. 2016 Oct;17(10):626-42 [PMID: 27485899]
  57. Biochim Biophys Acta Mol Cell Res. 2018 Dec;1865(12):1869-1877 [PMID: 30262434]
  58. Hepatology. 2018 Dec;68(6):2359-2375 [PMID: 29742804]
  59. Proc Natl Acad Sci U S A. 2016 Mar 29;113(13):3527-32 [PMID: 26976582]
  60. Cancer Res. 2018 Nov 15;78(22):6349-6353 [PMID: 30442814]
  61. Pharmacol Ther. 2019 Jul;199:139-154 [PMID: 30851297]
  62. Cells. 2018 May 10;7(5): [PMID: 29748481]
  63. Int J Mol Sci. 2019 Feb 15;20(4): [PMID: 30781344]
  64. J Cell Biochem. 2017 Sep;118(9):2484-2501 [PMID: 28106295]
  65. Proc Natl Acad Sci U S A. 2019 Aug 27;116(35):17280-17289 [PMID: 31350353]
  66. Cancer Cell. 2016 Dec 12;30(6):925-939 [PMID: 27866850]
  67. Signal Transduct Target Ther. 2019 Dec 24;4:64 [PMID: 31885879]
  68. Cancer Lett. 2015 Jun 1;361(2):218-25 [PMID: 25749422]
  69. Cancer Res. 2010 Nov 15;70(22):9265-76 [PMID: 21045142]
  70. BMB Rep. 2019 Mar;52(3):181-189 [PMID: 30760385]
  71. EMBO Rep. 2011 Apr;12(4):334-41 [PMID: 21399621]
  72. J Cell Biochem. 2019 Mar;120(3):2782-2790 [PMID: 30321449]
  73. Anticancer Res. 2016 Mar;36(3):1143-51 [PMID: 26977010]
  74. BMC Cancer. 2019 Jul 8;19(1):670 [PMID: 31286874]
  75. J Cell Sci. 2012 Feb 1;125(Pt 3):531-7 [PMID: 22389392]
  76. Biochem J. 2015 May 1;467(3):365-86 [PMID: 25886174]
  77. Mol Cell Biochem. 2019 Apr;454(1-2):1-9 [PMID: 30306455]
  78. Stem Cell Reports. 2017 May 9;8(5):1366-1378 [PMID: 28392218]
  79. PLoS Pathog. 2017 May 18;13(5):e1006372 [PMID: 28542609]
  80. Proc Natl Acad Sci U S A. 2001 Jul 17;98(15):8554-9 [PMID: 11438690]
  81. Nat Chem Biol. 2015 Aug;11(8):611-7 [PMID: 26075522]
  82. Nat Commun. 2017 Feb 15;8:14228 [PMID: 28198361]
  83. Front Cell Dev Biol. 2015 May 29;3:33 [PMID: 26075202]
  84. Oncogene. 2012 May 10;31(19):2373-88 [PMID: 21996736]
  85. Nat Commun. 2017 Nov 15;8(1):1523 [PMID: 29142217]
  86. Science. 2013 Feb 1;339(6119):590-5 [PMID: 23287719]
  87. Leukemia. 2017 Sep;31(9):1951-1961 [PMID: 28042144]
  88. Cell Metab. 2017 Dec 5;26(6):817-829.e6 [PMID: 28988820]
  89. Am J Cancer Res. 2020 Mar 01;10(3):727-742 [PMID: 32266087]
  90. Angew Chem Int Ed Engl. 2012 Nov 12;51(46):11463-7 [PMID: 23065727]
  91. Cancer Res. 2019 Jan 1;79(1):33-46 [PMID: 30341066]
  92. J Am Chem Soc. 2010 Apr 28;132(16):5820-6 [PMID: 20369832]
  93. Nat Commun. 2016 Aug 30;7:12632 [PMID: 27572267]
  94. Mol Cell. 2013 Sep 12;51(5):559-72 [PMID: 23973329]
  95. Mol Cell. 2017 Oct 19;68(2):456-470.e10 [PMID: 29053960]
  96. Cancer Res. 2013 Aug 1;73(15):4950-9 [PMID: 23722539]
  97. Biochem J. 2013 Apr 15;451(2):185-94 [PMID: 23398456]
  98. Cancer Discov. 2011 Sep;1(4):312-25 [PMID: 22586610]
  99. J Clin Invest. 2019 Feb 21;129(5):1878-1894 [PMID: 30829648]
  100. EMBO Rep. 2014 Dec;15(12):1268-77 [PMID: 25355043]
  101. Trends Cancer. 2019 Oct;5(10):632-653 [PMID: 31706510]
  102. Biochem Biophys Res Commun. 2002 Jun 14;294(3):700-9 [PMID: 12056827]
  103. Mol Cell. 2016 Jul 7;63(1):146-55 [PMID: 27292798]
  104. Front Oncol. 2018 Mar 28;8:86 [PMID: 29644214]
  105. Nat Methods. 2020 Dec;17(12):1245-1253 [PMID: 33169015]
  106. Tumour Biol. 2016 Sep;37(9):11553-11572 [PMID: 27260630]
  107. Mol Cell. 2016 Apr 7;62(1):121-36 [PMID: 26949039]
  108. Nature. 2018 Dec;564(7734):130-135 [PMID: 30487606]
  109. FASEB J. 2018 Jan;32(1):230-242 [PMID: 28874458]
  110. Mol Cell Biol. 2008 Dec;28(23):7081-95 [PMID: 18838541]
  111. Sci Rep. 2017 Aug 21;7(1):8923 [PMID: 28827764]
  112. Hum Vaccin Immunother. 2019;15(5):1111-1122 [PMID: 30888929]
  113. Oncoimmunology. 2020 Apr 14;9(1):1746148 [PMID: 32363114]
  114. Cancer Lett. 2017 Feb 28;387:61-68 [PMID: 26845449]
  115. Nat Struct Mol Biol. 2014 Sep;21(9):803-9 [PMID: 25108355]
  116. Structure. 2019 Apr 2;27(4):590-605.e5 [PMID: 30713027]
  117. DNA Repair (Amst). 2017 Aug;56:92-101 [PMID: 28624371]
  118. Nat Commun. 2019 Sep 25;10(1):4353 [PMID: 31554795]
  119. Oncotarget. 2016 Sep 13;7(37):60519-60534 [PMID: 27517496]
  120. Nat Commun. 2016 Dec 09;7:13644 [PMID: 27934968]
  121. Mol Cell. 2018 Aug 16;71(4):606-620.e7 [PMID: 30118680]
  122. Semin Cancer Biol. 2016 Feb;36:71-9 [PMID: 26506454]
  123. Nat Cell Biol. 2002 Mar;4(3):222-31 [PMID: 11836526]
  124. Science. 2010 Mar 12;327(5971):1345-50 [PMID: 20223979]
  125. Nat Commun. 2018 Sep 28;9(1):3996 [PMID: 30266897]
  126. J Cell Biochem. 2011 Dec;112(12):3882-90 [PMID: 21964756]
  127. Am J Transl Res. 2017 Apr 15;9(4):1783-1791 [PMID: 28469783]
  128. J Biol Chem. 2012 Jan 13;287(3):1962-9 [PMID: 22128162]
  129. EMBO Rep. 2005 Apr;6(4):373-8 [PMID: 15776016]
  130. Trends Endocrinol Metab. 2017 Nov;28(11):794-806 [PMID: 28797581]
  131. Nature. 2018 Jan 4;553(7686):91-95 [PMID: 29160310]
  132. FEBS Lett. 2018 Feb;592(4):621-630 [PMID: 29364514]
  133. Cell. 2016 Jun 2;165(6):1440-1453 [PMID: 27259151]

Grants

  1. 23665/Cancer Research Society

MeSH Term

Angiogenesis Inhibitors
Humans
Neoplasms
Signal Transduction
Small Molecule Libraries
Tumor Microenvironment
Ubiquitin
Ubiquitin-Activating Enzymes
Ubiquitin-Conjugating Enzymes
Ubiquitin-Protein Ligases
Ubiquitination

Chemicals

Angiogenesis Inhibitors
Small Molecule Libraries
Ubiquitin
Ubiquitin-Conjugating Enzymes
Ubiquitin-Protein Ligases
Ubiquitin-Activating Enzymes

Word Cloud

Created with Highcharts 10.0.0tumormicroenvironmentubiquitincellsenzymesE3Tumorcellularimmunecancer-associatedfibroblastsetcnon-cellularextracellularmatrixubiquitinationligasescandeubiquitinasestherapeuticmicroenvironmentscomposedmyriadelementsmesenchymalstemcytokinesgrowthfactorscollectivelyprovidepermissiveenvironmentenablingprogressionreviewfocusedregulationUbiquitinationreversibleproteinpost-translationalmodificationregulatesvariouskeybiologicalprocesseswherebyattachedsubstratescatalyticcascadecoordinatedmultipleincludingE1ubiquitin-activatingE2ubiquitin-conjugatingcontrastremovedprocessdeubiquitinationdiscussrolesmodulatorscomponentsprovidingpotentialtargetscancertherapyFinallyintroducedseveralemergingtechnologiesutilizeddevelopeffectiveagentstargetingTargetingUbiquitinSignalingCascadeMicroenvironmentCancerTherapyligasedeubiquitinasehypoxiainhibitorsvariants

Similar Articles

Cited By