Structural basis of ribosomal RNA transcription regulation.

Yeonoh Shin, M Zuhaib Qayyum, Danil Pupov, Daria Esyunina, Andrey Kulbachinskiy, Katsuhiko S Murakami
Author Information
  1. Yeonoh Shin: Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, 16802, USA. ORCID
  2. M Zuhaib Qayyum: Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, 16802, USA.
  3. Danil Pupov: Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, 123182, Russia. ORCID
  4. Daria Esyunina: Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, 123182, Russia.
  5. Andrey Kulbachinskiy: Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, 123182, Russia. ORCID
  6. Katsuhiko S Murakami: Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, 16802, USA. kum14@psu.edu. ORCID

Abstract

Ribosomal RNA (rRNA) is most highly expressed in rapidly growing bacteria and is drastically downregulated under stress conditions by the global transcriptional regulator DksA and the alarmone ppGpp. Here, we determined cryo-electron microscopy structures of the Escherichia coli RNA polymerase (RNAP) σ holoenzyme during rRNA promoter recognition with and without DksA/ppGpp. RNAP contacts the UP element using dimerized α subunit carboxyl-terminal domains and scrunches the template DNA with the σ finger and β' lid to select the transcription start site favorable for rapid promoter escape. Promoter binding induces conformational change of σ domain 2 that opens a gate for DNA loading and ejects σ from the RNAP cleft to facilitate open complex formation. DksA/ppGpp binding also opens the DNA loading gate, which is not coupled to σ ejection and impedes open complex formation. These results provide a molecular basis for the exceptionally active rRNA transcription and its vulnerability to DksA/ppGpp.

References

  1. Nomura, M. Regulation of ribosome biosynthesis in Escherichia coli and Saccharomyces cerevisiae: diversity and common principles. J. Bacteriol. 181, 6857–6864 (1999). [PMID: 10559149]
  2. Zengel, J. M. & Lindahl, L. Diverse mechanisms for regulating ribosomal protein synthesis in Escherichia coli. Prog. Nucleic Acid Res. Mol. Biol. 47, 331–370 (1994). [PMID: 7517053]
  3. Bremer, H. & Dennis, P. P. Modulation of chemical composition and other parameters of the cell at different exponential growth rates. EcoSal Plus 3, 1–49 (2008). [DOI: 10.1128/ecosal.5.2.3]
  4. Gourse, R. L. et al. Transcriptional responses to ppGpp and DksA. Annu. Rev. Microbiol. 72, 163–184 (2018). [PMID: 30200857]
  5. Ross, W. et al. A third recognition element in bacterial promoters: DNA binding by the alpha subunit of RNA polymerase. Science 262, 1407–1413 (1993). [PMID: 8248780]
  6. Winkelman, J. T. & Gourse, R. L. Open complex DNA scrunching: a key to transcription start site selection and promoter escape. Bioessays 39, 1600193 (2017).
  7. Gaal, T., Bartlett, M. S., Ross, W., Turnbough, C. L. Jr. & Gourse, R. L. Transcription regulation by initiating NTP concentration: rRNA synthesis in bacteria. Science 278, 2092–2097 (1997). [PMID: 9405339]
  8. Cashel, M. & Gallant, J. Two compounds implicated in the function of the RC gene of Escherichia coli. Nature 221, 838–841 (1969). [PMID: 4885263]
  9. Potrykus, K. & Cashel, M. (p)ppGpp: still magical? Annu. Rev. Microbiol. 62, 35–51 (2008).
  10. Hauryliuk, V., Atkinson, G. C., Murakami, K. S., Tenson, T. & Gerdes, K. Recent functional insights into the role of (p)ppGpp in bacterial physiology. Nat. Rev. Microbiol. 13, 298–309 (2015). [PMID: 25853779]
  11. Molodtsov, V. et al. Allosteric effector ppGpp potentiates the inhibition of transcript initiation by DksA. Mol. Cell 69, 828–839.e5 (2018). [PMID: 29478808]
  12. Murakami, K. S., Masuda, S., Campbell, E. A., Muzzin, O. & Darst, S. A. Structural basis of transcription initiation: an RNA polymerase holoenzyme-DNA complex. Science 296, 1285–1290 (2002). [PMID: 12016307]
  13. Zhang, Y. et al. Structural basis of transcription initiation. Science 338, 1076–1080 (2012). [PMID: 23086998]
  14. Chen, J. et al. Stepwise Promoter Melting by Bacterial RNA Polymerase. Mol. Cell 78, 275–288.e6 (2020). [PMID: 32160514]
  15. Sreenivasan, R. et al. Fluorescence-detected conformational changes in duplex DNA in open complex formation by Escherichia coli RNA polymerase: upstream wrapping and downstream bending precede clamp opening and insertion of the downstream duplex. Biochemistry 59, 1565–1581 (2020). [PMID: 32216369]
  16. Ko, J. & Heyduk, T. Kinetics of promoter escape by bacterial RNA polymerase: effects of promoter contacts and transcription bubble collapse. Biochem J. 463, 135–144 (2014). [PMID: 24995916]
  17. Karpen, M. E. & deHaseth, P. L. Base flipping in open complex formation at bacterial promoters. Biomolecules 5, 668–678 (2015). [PMID: 25927327]
  18. Newlands, J. T., Ross, W., Gosink, K. K. & Gourse, R. L. Factor-independent activation of Escherichia coli rRNA transcription. II. characterization of complexes of rrnB P1 promoters containing or lacking the upstream activator region with Escherichia coli RNA polymerase. J. Mol. Biol. 220, 569–583 (1991). [PMID: 1651394]
  19. Murakami, K., Kimura, M., Owens, J. T., Meares, C. F. & Ishihama, A. The two alpha subunits of Escherichia coli RNA polymerase are asymmetrically arranged and contact different halves of the DNA upstream element. Proc. Natl Acad. Sci. USA 94, 1709–1714 (1997). [PMID: 9050843]
  20. Lara-Gonzalez, S. et al. The RNA polymerase alpha subunit recognizes the DNA shape of the upstream promoter element. Biochemistry 59, 4523–4532 (2020). [PMID: 33205945]
  21. Fujita, N., Endo, S. & Ishihama, A. Structural requirements for the interdomain linker of alpha subunit of Escherichia coli RNA polymerase. Biochemistry 39, 6243–6249 (2000). [PMID: 10821700]
  22. Sreenivasan, R. et al. Fluorescence resonance energy transfer characterization of DNA wrapping in closed and open Escherichia coli RNA polymerase-lambdaP(R) promoter complexes. Biochemistry 55, 2174–2186 (2016). [PMID: 26998673]
  23. Doniselli, N. et al. New insights into the regulatory mechanisms of ppGpp and DksA on Escherichia coli RNA polymerase-promoter complex. Nucleic Acids Res. 43, 5249–5262 (2015). [PMID: 25916853]
  24. Feklistov, A. & Darst, S. A. Structural basis for promoter-10 element recognition by the bacterial RNA polymerase sigma subunit. Cell 147, 1257–1269 (2011). [PMID: 22136875]
  25. Murphy, H. & Cashel, M. Isolation of RNA polymerase suppressors of a (p)ppGpp deficiency. Methods Enzymol. 371, 596–601 (2003). [PMID: 14712731]
  26. Rutherford, S. T., Villers, C. L., Lee, J. H., Ross, W. & Gourse, R. L. Allosteric control of Escherichia coli rRNA promoter complexes by DksA. Genes Dev. 23, 236–248 (2009). [PMID: 19171784]
  27. NandyMazumdar, M. et al. RNA polymerase gate loop guides the nontemplate DNA strand in transcription complexes. Proc. Natl Acad. Sci. USA 113, 14994–14999 (2016). [PMID: 27956639]
  28. Haugen, S. P., Ross, W., Manrique, M. & Gourse, R. L. Fine structure of the promoter-sigma region 1.2 interaction. Proc. Natl Acad. Sci. USA 105, 3292–3297 (2008). [PMID: 18287032]
  29. Winkelman, J. T., Chandrangsu, P., Ross, W. & Gourse, R. L. Open complex scrunching before nucleotide addition accounts for the unusual transcription start site of E. coli ribosomal RNA promoters. Proc. Natl Acad. Sci. USA 113, E1787–E1795 (2016). [PMID: 26976590]
  30. Pupov, D., Petushkov, I., Esyunina, D., Murakami, K. S. & Kulbachinskiy, A. Region 3.2 of the sigma factor controls the stability of rRNA promoter complexes and potentiates their repression by DksA. Nucleic Acids Res. 46, 11477–11487 (2018). [PMID: 30321408]
  31. Henderson, K. L. et al. Mechanism of transcription initiation and promoter escape by E. coli RNA polymerase. Proc. Natl Acad. Sci. USA 114, E3032–E3040 (2017). [PMID: 28348246]
  32. Murakami, K. S., Masuda, S. & Darst, S. A. Structural basis of transcription initiation: RNA polymerase holoenzyme at 4 A resolution. Science 296, 1280–1284 (2002). [PMID: 12016306]
  33. Mazumder, A. & Kapanidis, A. N. Recent advances in understanding sigma70-dependent transcription initiation mechanisms. J. Mol. Biol. 431, 3947–3959 (2019). [PMID: 31082441]
  34. Kulbachinskiy, A. & Mustaev, A. Region 3.2 of the sigma subunit contributes to the binding of the 3’-initiating nucleotide in the RNA polymerase active center and facilitates promoter clearance during initiation. J. Biol. Chem. 281, 18273–18276 (2006). [PMID: 16690607]
  35. Kubori, T. & Shimamoto, N. A branched pathway in the early stage of transcription by Escherichia coli RNA polymerase. J. Mol. Biol. 256, 449–457 (1996). [PMID: 8604130]
  36. Stumper, S. K. et al. Delayed inhibition mechanism for secondary channel factor regulation of ribosomal RNA transcription. eLife 8, e40576 n(2019).
  37. Parshin, A. et al. DksA regulates RNA polymerase in Escherichia coli through a network of interactions in the secondary channel that includes Sequence Insertion 1. Proc. Natl Acad. Sci. USA 112, E6862–E6871 (2015). [PMID: 26604313]
  38. Chen, J. et al. E. coli TraR allosterically regulates transcription initiation by altering RNA polymerase conformation. eLife 8, e49375 (2019).
  39. Leibman, M. & Hochschild, A. A sigma-core interaction of the RNA polymerase holoenzyme that enhances promoter escape. EMBO J. 26, 1579–1590 (2007). [PMID: 17332752]
  40. Narayanan, A. et al. Cryo-EM structure of Escherichia coli sigma(70) RNAP and promoter DNA complex revealed a role of sigma non-conserved region during the open complex formation. J. Biol. Chem. 293, 7367–7375 (2018). [PMID: 29581236]
  41. Glyde, R. et al. Structures of bacterial RNA polymerase complexes reveal the mechanism of DNA loading and transcription initiation. Mol. Cell 70, 1111–1120.e3 (2018). [PMID: 29932903]
  42. Henderson, K. L. et al. RNA polymerase: step-by-step kinetics and mechanism of transcription initiation. Biochemistry 58, 2339–2352 (2019). [PMID: 30950601]
  43. Sanchez-Vazquez, P., Dewey, C. N., Kitten, N., Ross, W. & Gourse, R. L. Genome-wide effects on Escherichia coli transcription from ppGpp binding to its two sites on RNA polymerase. Proc. Natl Acad. Sci. USA 116, 8310–8319 (2019). [PMID: 30971496]
  44. Gummesson, B., Lovmar, M. & Nystrom, T. A proximal promoter element required for positive transcriptional control by guanosine tetraphosphate and DksA protein during the stringent response. J. Biol. Chem. 288, 21055–21064 (2013). [PMID: 23749992]
  45. Paul, B. J., Berkmen, M. B. & Gourse, R. L. DksA potentiates direct activation of amino acid promoters by ppGpp. Proc. Natl Acad. Sci. USA 102, 7823–7828 (2005). [PMID: 15899978]
  46. Girard, M. E. et al. DksA and ppGpp regulate the sigma(S) stress response by activating promoters for the small RNA DsrA and the anti-adapter protein IraP. J. Bacteriol. 200, 1–12 (2018). [DOI: 10.1128/JB.00463-17]
  47. Costanzo, A. et al. ppGpp and DksA likely regulate the activity of the extracytoplasmic stress factor sigmaE in Escherichia coli by both direct and indirect mechanisms. Mol. Microbiol. 67, 619–632 (2008). [PMID: 18086212]
  48. Li, L., Fang, C., Zhuang, N., Wang, T. & Zhang, Y. Structural basis for transcription initiation by bacterial ECF sigma factors. Nat. Commun. 10, 1153 (2019). [PMID: 30858373]
  49. Xu, J. et al. Crl activates transcription by stabilizing active conformation of the master stress transcription initiation factor. eLife 8, e50928 (2019).
  50. Murakami, K. S. X-ray crystal structure of Escherichia coli RNA polymerase sigma70 holoenzyme. J. Biol. Chem. 288, 9126–9134 (2013). [PMID: 23389035]
  51. Zivanov, J. et al. New tools for automated high-resolution cryo-EM structure determination in RELION-3. eLife 7, e42166 (2018).
  52. Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017). [PMID: 28250466]
  53. Zhang, K. Gctf: real-time CTF determination and correction. J. Struct. Biol. 193, 1–12 (2016). [PMID: 26592709]
  54. Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017). [PMID: 28165473]
  55. Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput Chem. 25, 1605–1612 (2004). [PMID: 15264254]
  56. Afonine, P. V. et al. Joint X-ray and neutron refinement with phenix.refine. Acta Crystallogr. D. Biol. Crystallogr. 66, 1153–1163 (2010). [PMID: 21041930]
  57. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D. Biol. Crystallogr. 60, 2126–2132 (2004). [PMID: 15572765]
  58. Pettersen, E. F. et al. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci. 30, 70–82 (2021). [PMID: 32881101]
  59. Svetlov, V. & Artsimovitch, I. Purification of bacterial RNA polymerase: tools and protocols. Methods Mol. Biol. 1276, 13–29 (2015). [PMID: 25665556]
  60. SantaLucia, J. Jr. A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics. Proc. Natl Acad. Sci. USA 95, 1460–1465 (1998). [PMID: 9465037]
  61. Dienemann, C., Schwalb, B., Schilbach, S. & Cramer, P. Promoter distortion and opening in the RNA polymerase II cleft. Mol. Cell 73, 97–106.e4 (2019). [PMID: 30472190]

Grants

  1. R01 GM087350/NIGMS NIH HHS
  2. R35 GM131860/NIGMS NIH HHS

MeSH Term

Cryoelectron Microscopy
DNA, Bacterial
DNA-Directed RNA Polymerases
Escherichia coli
Escherichia coli Proteins
Gene Expression Regulation, Bacterial
Guanosine Tetraphosphate
Holoenzymes
Promoter Regions, Genetic
Protein Conformation
RNA, Bacterial
RNA, Ribosomal
Sigma Factor
Transcription Initiation Site
Transcription, Genetic

Chemicals

DNA, Bacterial
Escherichia coli Proteins
Holoenzymes
RNA, Bacterial
RNA, Ribosomal
Sigma Factor
dksA protein, E coli
Guanosine Tetraphosphate
RNA polymerase sigma 70
DNA-Directed RNA Polymerases

Word Cloud

Created with Highcharts 10.0.0σRNArRNARNAPDksA/ppGppDNAtranscriptionbindingopensgateloadingopencomplexformationbasisRibosomalhighlyexpressedrapidlygrowingbacteriadrasticallydownregulatedstressconditionsglobaltranscriptionalregulatorDksAalarmoneppGppdeterminedcryo-electronmicroscopystructuresEscherichiacolipolymeraseholoenzymepromoterrecognitionwithoutcontactsUPelementusingdimerizedαsubunitcarboxyl-terminaldomainsscrunchestemplatefingerβ'lidselectstartsitefavorablerapidpromoter escapePromoterinducesconformationalchangedomain2ejectscleftfacilitatealsocoupledejectionimpedesresultsprovidemolecularexceptionallyactivevulnerabilityStructuralribosomalregulation

Similar Articles

Cited By