Mitochondria and early-life adversity.

Emily K Zitkovsky, Teresa E Daniels, Audrey R Tyrka
Author Information
  1. Emily K Zitkovsky: Mood Disorders Research Program and Laboratory for Clinical and Translational Neuroscience, Butler Hospital, 345 Blackstone Boulevard, Providence, RI 02906, USA; Alpert Medical School of Brown University, 222 Richmond St, Providence, RI 02903, USA. Electronic address: emily_zitkovsky@brown.edu.
  2. Teresa E Daniels: Mood Disorders Research Program and Laboratory for Clinical and Translational Neuroscience, Butler Hospital, 345 Blackstone Boulevard, Providence, RI 02906, USA; Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, 345 Blackstone Boulevard, Providence, RI 02906, USA. Electronic address: teresa_daniels@brown.edu.
  3. Audrey R Tyrka: Mood Disorders Research Program and Laboratory for Clinical and Translational Neuroscience, Butler Hospital, 345 Blackstone Boulevard, Providence, RI 02906, USA; Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, 345 Blackstone Boulevard, Providence, RI 02906, USA. Electronic address: audrey_tyrka@brown.edu.

Abstract

Early-life adversity (ELA), which includes maltreatment, neglect, or severe trauma in childhood, increases the life-long risk for negative health outcomes. Mitochondria play a key role in the stress response and may be an important mechanism by which stress is transduced into biological risk for disease. By responding to cues from stress-signaling pathways, mitochondria interact dynamically with physiological stress responses coordinated by the central nervous, endocrine, and immune systems. Preclinical evidence suggests that alterations in mitochondrial function and structure are linked to both early stress and systemic biological dysfunction. Early clinical studies support that increased mitochondrial DNA content and altered cellular energy demands may be present in individuals with a history of ELA. Further research should investigate mitochondria as a potential therapeutic target following ELA.

Keywords

References

  1. Dev Psychopathol. 2001 Summer;13(3):677-93 [PMID: 11523854]
  2. Transl Psychiatry. 2018 Oct 29;8(1):236 [PMID: 30374018]
  3. Ann Neurol. 2017 Dec;82(6):1016-1021 [PMID: 29149768]
  4. Neuroscience. 2019 Oct 1;417:1-10 [PMID: 31400490]
  5. Biol Psychiatry. 2018 May 1;83(9):780-789 [PMID: 29628042]
  6. Psychoneuroendocrinology. 2012 Jul;37(7):1057-70 [PMID: 22244747]
  7. J UOEH. 2016;38(4):325-334 [PMID: 27980316]
  8. Proc Natl Acad Sci U S A. 2020 Oct 6;117(40):24778-24784 [PMID: 33004627]
  9. PLoS Med. 2013 Dec;10(12):e1001577; discussion e1001577 [PMID: 24391478]
  10. Am J Prev Med. 2015 Mar;48(3):345-9 [PMID: 25300735]
  11. Hum Mol Genet. 2002 Jan 15;11(2):133-45 [PMID: 11809722]
  12. Trends Genet. 2001 Apr;17(4):199-205 [PMID: 11275325]
  13. Front Cell Neurosci. 2017 Apr 19;11:87 [PMID: 28469557]
  14. Transl Psychiatry. 2017 Dec 11;7(12):1274 [PMID: 29225338]
  15. Nat Rev Endocrinol. 2014 May;10(5):303-10 [PMID: 24663223]
  16. Mitochondrion. 2016 Sep;30:105-16 [PMID: 27423788]
  17. Nat Genet. 2012 May 27;44(7):740-2 [PMID: 22634753]
  18. Transl Psychiatry. 2016 Dec 6;6(12):e971 [PMID: 27922635]
  19. Psychoneuroendocrinology. 2020 Jun;116:104632 [PMID: 32199200]
  20. Mol Psychiatry. 2018 Apr;23(4):858-871 [PMID: 28322278]
  21. Proc Natl Acad Sci U S A. 2015 Dec 1;112(48):E6614-23 [PMID: 26627253]
  22. Dev Psychopathol. 2016 Nov;28(4pt1):1117-1146 [PMID: 27739386]
  23. Clin Sci (Lond). 2017 May 1;131(9):803-822 [PMID: 28424375]
  24. Ann Clin Transl Neurol. 2020 May;7(5):683-694 [PMID: 32343046]
  25. Neuron. 2015 Jul 15;87(2):371-81 [PMID: 26182419]
  26. Nature. 2002 May 2;417(6884):87-91 [PMID: 11986670]
  27. Redox Biol. 2020 Apr;31:101505 [PMID: 32201220]
  28. Biol Psychiatry. 2018 Jul 1;84(1):9-17 [PMID: 29525040]
  29. Mol Psychiatry. 2014 May;19(5):544-54 [PMID: 23689533]
  30. Mol Biol Cell. 2004 Nov;15(11):5001-11 [PMID: 15356267]
  31. Biol Psychiatry. 2007 Nov 15;62(10):1080-7 [PMID: 17662255]
  32. Proc Natl Acad Sci U S A. 2009 Mar 3;106(9):3543-8 [PMID: 19202080]
  33. Psychosom Med. 2018 Feb/Mar;80(2):126-140 [PMID: 29389735]
  34. Annu Rev Clin Psychol. 2020 May 7;16:165-186 [PMID: 32092280]
  35. Iran J Pharm Res. 2018;17(Suppl2):124-133 [PMID: 31011347]
  36. World J Biol Psychiatry. 2017 Mar;18(2):151-156 [PMID: 27739340]
  37. Eur J Hum Genet. 2006 May;14(5):520-8 [PMID: 16538224]
  38. Front Psychiatry. 2019 May 08;10:312 [PMID: 31139101]
  39. Psychoneuroendocrinology. 2019 Aug;106:293-311 [PMID: 31154264]
  40. Front Neurosci. 2018 May 23;12:342 [PMID: 29875626]
  41. Nat Neurosci. 2015 Oct;18(10):1376-85 [PMID: 26404712]
  42. Brain Behav Immun. 2012 Jan;26(1):13-7 [PMID: 21801830]
  43. Mol Psychiatry. 2016 Jan;21(1):39-48 [PMID: 26481320]
  44. Cell. 1999 Jul 9;98(1):115-24 [PMID: 10412986]
  45. J Hum Genet. 2011 Dec;56(12):869-72 [PMID: 21993419]
  46. Hum Mol Genet. 2016 Jul 15;25(14):2972-2984 [PMID: 27206984]
  47. Aging (Albany NY). 2019 May 19;11(10):3117-3137 [PMID: 31105084]
  48. Biol Psychiatry. 2008 Jun 15;63(12):1147-54 [PMID: 18339361]
  49. Chronic Stress (Thousand Oaks). 2017 Feb;1: [PMID: 28649671]
  50. Mol Genet Metab. 2012 Jan;105(1):103-9 [PMID: 22030097]
  51. Front Neuroendocrinol. 2018 Apr;49:72-85 [PMID: 29339091]
  52. Nat Neurosci. 2019 Mar;22(3):401-412 [PMID: 30742114]
  53. J Alzheimers Dis. 2020;78(2):505-514 [PMID: 33044180]
  54. Cell Mol Immunol. 2004 Oct;1(5):343-50 [PMID: 16285893]
  55. Proc Natl Acad Sci U S A. 2015 Dec 15;112(50):15486-91 [PMID: 26621716]
  56. Trends Endocrinol Metab. 2007 Jul;18(5):190-8 [PMID: 17500006]
  57. Front Behav Neurosci. 2018 Jul 03;12:127 [PMID: 30034327]
  58. Ann N Y Acad Sci. 2018 Sep;1428(1):151-169 [PMID: 30011075]
  59. BMC Psychiatry. 2015 Mar 17;15:50 [PMID: 25884388]
  60. PLoS One. 2016 Oct 13;11(10):e0163770 [PMID: 27736919]
  61. Prog Neuropsychopharmacol Biol Psychiatry. 2017 Jun 2;76:169-178 [PMID: 28259722]
  62. Mol Cell. 2016 Mar 3;61(5):654-666 [PMID: 26942670]
  63. Brain Behav Immun. 2020 Jul;87:229-237 [PMID: 31794798]
  64. Curr Biol. 2015 May 4;25(9):1146-56 [PMID: 25913401]
  65. Psychoneuroendocrinology. 2019 Jul;105:123-137 [PMID: 30578047]
  66. Nature. 1996 Jul 11;382(6587):120-1 [PMID: 8700201]
  67. BMC Med. 2017 Jul 20;15(1):135 [PMID: 28724431]
  68. Neuropsychopharmacology. 2017 Jan;42(1):99-114 [PMID: 27629365]
  69. Basic Clin Neurosci. 2020 Jan-Feb;11(1):69-78 [PMID: 32483477]
  70. J Cell Biol. 2008 Dec 1;183(5):795-803 [PMID: 19029340]
  71. Biol Psychiatry. 2017 Oct 1;82(7):462-471 [PMID: 28392082]
  72. Biol Psychiatry. 2018 Jan 1;83(1):81-89 [PMID: 28935211]
  73. Psychopharmacology (Berl). 2011 Mar;214(1):367-75 [PMID: 20838776]
  74. J Inherit Metab Dis. 2018 Jul;41(4):585-596 [PMID: 29594645]
  75. Brain Behav Immun. 2018 Jan;67:1-12 [PMID: 28216088]
  76. J Endocrinol. 2019 Aug;242(2):65-77 [PMID: 31117053]
  77. Child Dev. 2010 Jan-Feb;81(1):252-69 [PMID: 20331666]
  78. Psychoneuroendocrinology. 2008 Feb;33(2):227-37 [PMID: 18096322]
  79. J Neuroendocrinol. 2016 Sep;28(9): [PMID: 27196416]
  80. J Psychiatr Res. 2017 Oct;93:64-71 [PMID: 28601667]
  81. Psychol Bull. 2007 Jan;133(1):25-45 [PMID: 17201569]
  82. Trends Neurosci. 2019 Sep;42(9):573-588 [PMID: 31362874]
  83. Int J Mol Sci. 2019 Oct 08;20(19): [PMID: 31597307]
  84. Science. 1995 Mar 24;267(5205):1828-31 [PMID: 7892608]
  85. Prog Biophys Mol Biol. 2020 Sep;155:36-41 [PMID: 32437701]
  86. Psychoneuroendocrinology. 2019 Sep;107:261-269 [PMID: 31174164]
  87. Eur Neuropsychopharmacol. 2017 Aug;27(8):751-758 [PMID: 28647451]
  88. Dev Psychopathol. 2021 Feb;33(1):301-312 [PMID: 32124708]
  89. Mitochondrion. 2016 Sep;30:197-207 [PMID: 27530300]
  90. J Cell Physiol. 2016 Dec;231(12):2570-81 [PMID: 26895995]
  91. Brain Behav Immun. 2013 Jan;27(1):8-12 [PMID: 22771426]
  92. Nat Rev Mol Cell Biol. 2012 May 16;13(6):397-404 [PMID: 22588366]
  93. Lancet. 2020 Aug 15;396(10249):489-497 [PMID: 32798491]
  94. Neuropsychopharmacology. 2018 Jun;43(7):1557-1564 [PMID: 29453441]
  95. Dev Psychopathol. 2010 Winter;22(1):165-75 [PMID: 20102654]
  96. Neuropsychobiology. 2020;79(6):417-427 [PMID: 32203965]
  97. Endocrinology. 2010 May;151(5):2117-27 [PMID: 20211972]
  98. Biol Psychiatry. 2016 Jan 15;79(2):78-86 [PMID: 25749099]
  99. BMJ Open. 2019 Mar 23;9(3):e024079 [PMID: 30904846]
  100. Biochim Biophys Acta. 2012 Dec;1823(12):2297-310 [PMID: 22917578]
  101. Brain Sci. 2020 Jul 14;10(7): [PMID: 32674298]
  102. Nat Rev Immunol. 2011 Jun;11(6):389-402 [PMID: 21597473]
  103. J Neurochem. 2011 Apr;117(2):209-20 [PMID: 21250997]
  104. Biol Psychiatry. 2018 May 1;83(9):751-760 [PMID: 29486891]
  105. Neurosci Lett. 2011 Jan 13;488(1):76-80 [PMID: 21070835]
  106. Physiol Behav. 2018 Jan 1;183:39-45 [PMID: 29061441]
  107. J Genet Genomics. 2009 Mar;36(3):125-31 [PMID: 19302968]
  108. Front Behav Neurosci. 2018 Dec 06;12:306 [PMID: 30574076]
  109. Mol Psychiatry. 2016 May;21(5):642-9 [PMID: 26033244]
  110. Biochim Biophys Acta. 2013 Feb;1833(2):417-24 [PMID: 22683990]
  111. Health Psychol Res. 2017 May 16;5(1):6378 [PMID: 28603779]
  112. Life Sci. 2016 Mar 1;148:183-93 [PMID: 26851532]
  113. J Theor Biol. 1967 Mar;14(3):255-74 [PMID: 11541392]
  114. Psychosom Med. 2018 Feb/Mar;80(2):141-153 [PMID: 29389736]
  115. Environ Health Perspect. 2014 Dec;122(12):1271-8 [PMID: 25127496]
  116. Psychoneuroendocrinology. 2019 Aug;106:268-276 [PMID: 31029929]
  117. Am J Prev Med. 1998 May;14(4):245-58 [PMID: 9635069]
  118. Lancet. 2009 Jan 3;373(9657):68-81 [PMID: 19056114]
  119. Mol Psychiatry. 2018 Oct;23(10):2039-2049 [PMID: 29892051]
  120. Curr Opin Behav Sci. 2019 Aug;28:142-151 [PMID: 32637466]
  121. Nat Rev Dis Primers. 2016 Oct 20;2:16080 [PMID: 27775730]
  122. Biol Psychiatry. 2018 May 1;83(9):731-738 [PMID: 29102411]
  123. Annu Rev Clin Psychol. 2018 May 7;14:371-397 [PMID: 29494257]
  124. Neuropsychopharmacology. 2017 Oct;42(11):2272-2282 [PMID: 28664925]
  125. Int J Biochem Cell Biol. 2005 Apr;37(4):822-34 [PMID: 15694841]
  126. Brain Behav Immun Health. 2020 May;5: [PMID: 33073254]
  127. Biol Psychiatry. 2018 May 1;83(9):722-730 [PMID: 29290371]
  128. PLoS Med. 2017 Mar 14;14(3):e1002251 [PMID: 28291786]
  129. Nature. 2011 Jan 13;469(7329):221-5 [PMID: 21124315]
  130. Neuron. 2015 May 20;86(4):883-901 [PMID: 25996133]
  131. Nature. 2010 Mar 4;464(7285):104-7 [PMID: 20203610]
  132. PLoS One. 2012;7(2):e32737 [PMID: 22393443]
  133. Sci Transl Med. 2016 Jun 8;8(342):342ra78 [PMID: 27280685]
  134. Lancet Public Health. 2017 Aug;2(8):e356-e366 [PMID: 29253477]
  135. PLoS One. 2014 Nov 12;9(11):e112628 [PMID: 25389775]

Grants

  1. R01 HD086487/NICHD NIH HHS
  2. R01 MH101107/NIMH NIH HHS
  3. R25 MH101076/NIMH NIH HHS

MeSH Term

Adverse Childhood Experiences
Animals
Central Nervous System
Endocrine System
Humans
Immune System
Mitochondria
Stress, Physiological

Word Cloud

Created with Highcharts 10.0.0stressadversityELAMitochondriaEarly-liferiskmaybiologicalmitochondriamitochondrialincludesmaltreatmentneglectseveretraumachildhoodincreaseslife-longnegativehealthoutcomesplaykeyroleresponseimportantmechanismtransduceddiseaserespondingcuesstress-signalingpathwaysinteractdynamicallyphysiologicalresponsescoordinatedcentralnervousendocrineimmunesystemsPreclinicalevidencesuggestsalterationsfunctionstructurelinkedearlysystemicdysfunctionEarlyclinicalstudiessupportincreasedDNAcontentalteredcellularenergydemandspresentindividualshistoryresearchinvestigatepotentialtherapeutictargetfollowingearly-lifeMechanismsStressTrauma

Similar Articles

Cited By