Acoustic radiation-free surface phononic crystal resonator for in-liquid low-noise gravimetric detection.

Feng Gao, Amine Bermak, Sarah Benchabane, Laurent Robert, Abdelkrim Khelif
Author Information
  1. Feng Gao: College of Science and Engineering, Hamad Bin Khalifa University, Education City, Doha, Qatar. ORCID
  2. Amine Bermak: College of Science and Engineering, Hamad Bin Khalifa University, Education City, Doha, Qatar.
  3. Sarah Benchabane: Institut FEMTO-ST, CNRS, Université de Bourgogne-Franche-Comté, Besançon, France.
  4. Laurent Robert: Institut FEMTO-ST, CNRS, Université de Bourgogne-Franche-Comté, Besançon, France.
  5. Abdelkrim Khelif: Institut FEMTO-ST, CNRS, Université de Bourgogne-Franche-Comté, Besançon, France.

Abstract

Acoustic wave resonators are promising candidates for gravimetric biosensing. However, they generally suffer from strong acoustic radiation in liquid, which limits their quality factor and increases their frequency noise. This article presents an acoustic radiation-free gravimetric biosensor based on a locally resonant surface phononic crystal (SPC) consisting of periodic high aspect ratio electrodes to address the above issue. The acoustic wave generated in the SPC is slower than the sound wave in water, hence it prevents acoustic propagation in the fluid and results in energy confinement near the electrode surface. This energy confinement results in a significant quality factor improvement and reduces frequency noise. The proposed SPC resonator is numerically studied by finite element analysis and experimentally implemented by an electroplating-based fabrication process. Experimental results show that the SPC resonator exhibits an in-liquid quality factor 15 times higher than a conventional Rayleigh wave resonator at a similar operating frequency. The proposed radiation suppression method using SPC can also be applied in other types of acoustic wave resonators. Thus, this method can serve as a general technique for boosting the in-liquid quality factor and sensing performance of many acoustic biosensors.

Keywords

References

  1. Biosens Bioelectron. 2017 Apr 15;90:363-377 [PMID: 27940240]
  2. Chem Soc Rev. 2011 Mar;40(3):1547-71 [PMID: 21132204]
  3. Biosens Bioelectron. 2001 Dec;16(9-12):979-87 [PMID: 11679278]
  4. Anal Chim Acta. 2008 Jul 14;620(1-2):8-26 [PMID: 18558119]
  5. ACS Sens. 2019 May 24;4(5):1151-1173 [PMID: 31056912]
  6. Biosens Bioelectron. 2012 Mar 15;33(1):1-9 [PMID: 22310157]
  7. Anal Bioanal Chem. 2008 Jul;391(5):1509-19 [PMID: 18265962]
  8. Anal Chem. 2020 Jan 7;92(1):363-377 [PMID: 31738852]
  9. Micromachines (Basel). 2018 Sep 30;9(10): [PMID: 30424434]
  10. Nat Nanotechnol. 2007 May;2(5):318-23 [PMID: 18654291]
  11. Trends Biotechnol. 2009 Dec;27(12):689-97 [PMID: 19853941]
  12. Biosens Bioelectron. 2018 Sep 30;116:1-15 [PMID: 29852471]
  13. Sci Rep. 2017 Aug 31;7(1):10130 [PMID: 28860462]
  14. Microsyst Nanoeng. 2020 Feb 10;6:4 [PMID: 34567619]
  15. Anal Chem. 2020 Feb 4;92(3):2809-2814 [PMID: 31939295]
  16. Biosens Bioelectron. 2020 Oct 15;166:112431 [PMID: 32862842]
  17. Microsyst Nanoeng. 2017;3: [PMID: 29862126]
  18. Anal Chem. 2020 Jan 7;92(1):1470-1476 [PMID: 31762255]

Word Cloud

Created with Highcharts 10.0.0acousticwaveSPCqualityfactorresonatorgravimetricfrequencysurfaceresultsin-liquidAcousticresonatorsradiationnoiseradiation-freephononiccrystalenergyconfinementproposedmethodcanpromisingcandidatesbiosensingHowevergenerallysufferstrongliquidlimitsincreasesarticlepresentsbiosensorbasedlocallyresonantconsistingperiodichighaspectratioelectrodesaddressissuegeneratedslowersoundwaterhencepreventspropagationfluidnearelectrodesignificantimprovementreducesnumericallystudiedfiniteelementanalysisexperimentallyimplementedelectroplating-basedfabricationprocessExperimentalshowexhibits15timeshigherconventionalRayleighsimilaroperatingsuppressionusingalsoappliedtypesThusservegeneraltechniqueboostingsensingperformancemanybiosensorslow-noisedetectionBiosensorsSensors

Similar Articles

Cited By