Perspectives: potential therapeutic approach with inhalation of ACE2-derived peptides for SARS-CoV-2 infection.

Rossella Talotta, Erle S Roberston
Author Information
  1. Rossella Talotta: Rheumatology Unit, Department of Clinical and Experimental Medicine, University of Messina, University Hospital "G. Martino" Messina, Italy.
  2. Erle S Roberston: Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania Philadelphia, USA.

Abstract

OBJECTIVE: ACE2 is crucially involved in the infection sustained by SARS-CoV-2, as it allows the entry of the virus into target cells while counteracting local inflammation, oxidative stress, and fibrosis. In this narrative review, we aim to discuss the usefulness of ACE2-derived peptides in the infection sustained by SARS-CoV-2.
METHODS: A total of 49 papers pertinent to the purpose of the review were selected from the PubMed and Google Scholar databases. Clinical trials registered at ClinicalTrials.gov and dealing with the use of ACE2-derived medications in COVID-19 were also searched and discussed.
RESULTS: Preclinical and clinical evidence shows that drugs mimicking or potentiating the effects of ACE2 may reduce the viral load and dampen the inflammatory and fibrotic pathways leading to respiratory distress. ACE2-derived therapeutic peptides may have a better pharmacokinetic and pharmacodynamic profile than other ACE2-based medications. They could be easily screened through peptide libraries and chemically modified in order to ameliorate the pharmacological properties. Furthermore, their local administration an intranasal delivery or inhalation may reduce the risk of systemic side effects, thus conferring a good safety profile.
CONCLUSION: ACE2-derived peptides may play a dual beneficial role in COVID-19, by either preventing virus spread or inhibiting the secretion of pro-inflammatory mediators in airways. Viral, host, and environmental factors may affect the effectiveness of this therapeutic approach to a various extent and represent therefore a matter of investigation for future studies.

Keywords

References

  1. Clin Sci (Lond). 2020 Mar 13;134(5):543-545 [PMID: 32167153]
  2. Endocrinology. 2004 Oct;145(10):4703-11 [PMID: 15231706]
  3. Mol Biol Rep. 2012 Jun;39(6):6581-9 [PMID: 22297693]
  4. Metabolism. 2020 Jul;108:154244 [PMID: 32320741]
  5. Clin Sci (Lond). 2006 Nov;111(5):333-40 [PMID: 16822235]
  6. Endocr Metab Immune Disord Drug Targets. 2020;20(6):807-811 [PMID: 32338224]
  7. Front Endocrinol (Lausanne). 2014 Jan 09;4:201 [PMID: 24409169]
  8. ACS Nano. 2020 Apr 28;14(4):5143-5147 [PMID: 32286790]
  9. J Clin Lab Anal. 2017 Mar;31(2): [PMID: 27500554]
  10. Lancet. 2020 Feb 15;395(10223):497-506 [PMID: 31986264]
  11. N Engl J Med. 2020 Jun 18;382(25):2431-2440 [PMID: 32356627]
  12. Crit Care. 2017 Dec 13;21(1):305 [PMID: 29237475]
  13. J Biol Regul Homeost Agents. 2020 Apr 07;34(2):339-343 [PMID: 32253888]
  14. Nat Commun. 2014 May 06;5:3594 [PMID: 24800825]
  15. Pharmacol Ther. 2010 Oct;128(1):119-28 [PMID: 20599443]
  16. Lancet. 2020 May 30;395(10238):1705-1714 [PMID: 32416785]
  17. Sci Total Environ. 2020 Aug 1;728:138859 [PMID: 32334163]
  18. Cardiovasc Res. 2020 May 1;116(6):1097-1100 [PMID: 32227090]
  19. Diabetes Metab Syndr. 2020 Jul - Aug;14(4):283-287 [PMID: 32283499]
  20. N Engl J Med. 2020 Jun 18;382(25):2441-2448 [PMID: 32356628]
  21. Circ Res. 2020 May 8;126(10):1456-1474 [PMID: 32264791]
  22. Virology. 2006 Jun 20;350(1):15-25 [PMID: 16510163]
  23. Drug Discov Today. 2015 Jan;20(1):122-8 [PMID: 25450771]
  24. Aging (Albany NY). 2020 Jun 16;12(12):11263-11276 [PMID: 32544884]
  25. Am J Physiol Heart Circ Physiol. 2015 Sep;309(5):H827-34 [PMID: 26163449]
  26. Viral Immunol. 2013 Apr;26(2):126-32 [PMID: 23573979]
  27. J Am Heart Assoc. 2015 Feb 16;4(2): [PMID: 25687731]
  28. Crit Care. 2017 Sep 7;21(1):234 [PMID: 28877748]
  29. Mol Cell Pediatr. 2016 Dec;3(1):16 [PMID: 27098663]
  30. Adv Drug Deliv Rev. 1997 Sep 15;27(2-3):235-256 [PMID: 10837560]
  31. Br J Pharmacol. 2020 Nov;177(21):4825-4844 [PMID: 32333398]
  32. J Pathol. 2004 Jun;203(2):631-7 [PMID: 15141377]
  33. Circulation. 2020 May 26;141(21):1665-1666 [PMID: 32242749]
  34. Nature. 2005 Jul 7;436(7047):112-6 [PMID: 16001071]
  35. Front Physiol. 2018 Apr 09;9:271 [PMID: 29731719]
  36. Circulation. 2005 May 24;111(20):2605-10 [PMID: 15897343]
  37. Nat Commun. 2020 Feb 26;11(1):1058 [PMID: 32103002]
  38. Antioxid Redox Signal. 2015 Jan 20;22(3):241-58 [PMID: 25089563]
  39. Nat Med. 2005 Aug;11(8):875-9 [PMID: 16007097]
  40. Clin Chim Acta. 2020 Jun;505:192-193 [PMID: 32220422]
  41. Biochemistry. 2003 Nov 18;42(45):13185-92 [PMID: 14609329]
  42. Cell. 2020 May 14;181(4):905-913.e7 [PMID: 32333836]
  43. Physiol Rev. 2006 Jul;86(3):747-803 [PMID: 16816138]
  44. Circ J. 2013;77(2):301-8 [PMID: 23328447]
  45. Clin Pharmacokinet. 2013 Sep;52(9):783-92 [PMID: 23681967]

Word Cloud

Created with Highcharts 10.0.0ACE2-derivedpeptidesmaySARS-CoV-2therapeuticinfectionCOVID-19ACE2sustainedviruslocalreviewmedicationseffectsreduceprofileinhalationapproachOBJECTIVE:cruciallyinvolvedallowsentrytargetcellscounteractinginflammationoxidativestressfibrosisnarrativeaimdiscussusefulnessMETHODS:total49paperspertinentpurposeselectedPubMedGoogleScholardatabasesClinicaltrialsregisteredClinicalTrialsgovdealingusealsosearcheddiscussedRESULTS:PreclinicalclinicalevidenceshowsdrugsmimickingpotentiatingviralloaddampeninflammatoryfibroticpathwaysleadingrespiratorydistressbetterpharmacokineticpharmacodynamicACE2-basedeasilyscreenedpeptidelibrarieschemicallymodifiedorderamelioratepharmacologicalpropertiesFurthermoreadministrationintranasaldeliveryrisksystemicsidethusconferringgoodsafetyCONCLUSION:playdualbeneficialroleeitherpreventingspreadinhibitingsecretionpro-inflammatorymediatorsairwaysViralhostenvironmentalfactorsaffecteffectivenessvariousextentrepresentthereforematterinvestigationfuturestudiesPerspectives:potentialangiotensin-convertingenzyme2

Similar Articles

Cited By