Risk-Based Decision Making: A Systematic Scoping Review of Animal Models and a Pilot Study on the Effects of Sleep Deprivation in Rats.

Cathalijn H C Leenaars, Stevie Van der Mierden, Ruud N J M A Joosten, Marnix A Van der Weide, Mischa Schirris, Maurice Dematteis, Franck L B Meijboom, Matthijs G P Feenstra, Andr�� Bleich
Author Information
  1. Cathalijn H C Leenaars: Institute for Laboratory Animal Science, Hannover Medical School, 30625 Hannover, Germany.
  2. Stevie Van der Mierden: Institute for Laboratory Animal Science, Hannover Medical School, 30625 Hannover, Germany.
  3. Ruud N J M A Joosten: Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, 1000 Amsterdam, The Netherlands.
  4. Marnix A Van der Weide: Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, 1000 Amsterdam, The Netherlands.
  5. Mischa Schirris: Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, 1000 Amsterdam, The Netherlands.
  6. Maurice Dematteis: Department of Addiction Medicine, Grenobles Alpes University Hospital, Faculty of Medicine, Grenoble Alpes University, 38400 Grenoble, France.
  7. Franck L B Meijboom: Unit Animals in Science and Society, Population Health Sciences, Utrecht University, 3500 Utrecht, The Netherlands. ORCID
  8. Matthijs G P Feenstra: Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, 1000 Amsterdam, The Netherlands.
  9. Andr�� Bleich: Institute for Laboratory Animal Science, Hannover Medical School, 30625 Hannover, Germany.

Abstract

Animals, including humans, frequently make decisions involving risk or uncertainty. Different strategies in these decisions can be advantageous depending the circumstances. Short sleep duration seems to be associated with more risky decisions in humans. Animal models for risk-based decision making can increase mechanistic understanding, but very little data is available concerning the effects of sleep. We combined primary- and meta-research to explore the relationship between sleep and risk-based decision making in animals. Our first objective was to create an overview of the available animal models for risky decision making. We performed a systematic scoping review. Our searches in Pubmed and Psychinfo retrieved 712 references, of which 235 were included. Animal models for risk-based decision making have been described for rodents, non-human primates, birds, pigs and honey-bees. We discuss task designs and model validity. Our second objective was to apply this knowledge and perform a pilot study on the effect of sleep deprivation. We trained and tested male Wistar rats on a probability discounting task; a "safe" lever always resulted in 1 reward, a "risky" lever resulted in 4 or no rewards. rats adapted their preferences to variations in reward probabilities ( < 0.001), but 12 h of sleep deprivation during the light phase did not clearly alter risk preference ( = 0.21).

Keywords

References

  1. Behav Neurosci. 2018 Apr;132(2):75-87 [PMID: 29481101]
  2. Alcohol. 2019 Sep;79:93-103 [PMID: 30664983]
  3. Behav Brain Res. 2015 Mar 1;280:119-27 [PMID: 25496783]
  4. Behav Pharmacol. 2019 Oct;30(7):605-616 [PMID: 31503070]
  5. Front Behav Neurosci. 2014 Feb 17;8:45 [PMID: 24596547]
  6. Dev Psychobiol. 2018 Mar;60(2):176-186 [PMID: 29152731]
  7. J Neurosci. 2018 May 2;38(18):4383-4398 [PMID: 29626169]
  8. Curr Opin Behav Sci. 2020 Feb;31:42-47 [PMID: 32864398]
  9. Science. 1997 Feb 28;275(5304):1293-5 [PMID: 9036851]
  10. Lab Anim. 2020 Nov 1;:23677220968599 [PMID: 33135562]
  11. Physiol Behav. 2020 Oct 15;225:113109 [PMID: 32730842]
  12. Neuroscience. 2019 Aug 10;413:64-76 [PMID: 31228592]
  13. Behav Sleep Med. 2019 Nov-Dec;17(6):729-739 [PMID: 29923749]
  14. Curr Opin Behav Sci. 2020 Feb;31:76-82 [PMID: 32864399]
  15. Front Behav Neurosci. 2018 Apr 10;12:68 [PMID: 29692713]
  16. Neuropharmacology. 2016 Jun;105:186-195 [PMID: 26775821]
  17. Eur J Neurosci. 2014 May;39(10):1664-70 [PMID: 24617747]
  18. Neuropharmacology. 2018 Sep 15;140:130-138 [PMID: 30053443]
  19. Biol Lett. 2013 Dec 11;9(6):20130902 [PMID: 24335272]
  20. Lab Anim. 2010 Jul;44(3):170-5 [PMID: 20551243]
  21. AIDS Behav. 2019 Mar;23(3):572-579 [PMID: 30267366]
  22. Sleep. 2007 May;30(5):603-9 [PMID: 17552375]
  23. Psychiatry Res. 2014 Mar 30;215(3):675-82 [PMID: 24434041]
  24. Pharmacol Biochem Behav. 2017 Feb;153:88-96 [PMID: 28011337]
  25. Front Neurosci. 2019 Aug 07;13:816 [PMID: 31447636]
  26. Horm Behav. 2020 Sep;125:104815 [PMID: 32640197]
  27. Trends Cogn Sci. 2001 Jun 1;5(6):271-277 [PMID: 11390298]
  28. Learn Behav. 2019 Dec;47(4):334-343 [PMID: 31429009]
  29. Front Neurosci. 2011 Oct 10;5:109 [PMID: 22013406]
  30. J Atten Disord. 2015 May;19(5):355-67 [PMID: 25477020]
  31. Behav Processes. 2012 Feb;89(2):95-103 [PMID: 22001371]
  32. Psychopharmacology (Berl). 2011 Jan;213(1):11-8 [PMID: 20814781]
  33. J Neurosci Methods. 2011 Mar 15;196(1):107-17 [PMID: 21262261]
  34. Physiol Behav. 2007 Aug 15;91(5):579-87 [PMID: 17477941]
  35. Hippocampus. 2017 Jul;27(7):743-758 [PMID: 28241404]
  36. Prog Neuropsychopharmacol Biol Psychiatry. 2017 Jul 3;77:178-184 [PMID: 28412411]
  37. Anim Cogn. 2018 Mar;21(2):227-234 [PMID: 29294199]
  38. J Neurosci. 2012 Nov 21;32(47):16880-91 [PMID: 23175840]
  39. Neuropsychopharmacology. 2014 Dec;39(13):3112-22 [PMID: 25005251]
  40. J Exp Biol. 2007 Jan;210(Pt 2):269-77 [PMID: 17210963]
  41. J Exp Anal Behav. 2000 Jan;73(1):79-92 [PMID: 10682341]
  42. Psychol Sci. 2019 Jan;30(1):105-115 [PMID: 30511893]
  43. Lab Anim. 2014 Jan;48(1):88 [PMID: 23836850]
  44. J Neurosci. 2015 Feb 18;35(7):3146-54 [PMID: 25698750]
  45. PLoS One. 2019 Apr 3;14(4):e0214531 [PMID: 30943239]
  46. Cogn Affect Behav Neurosci. 2017 Apr;17(2):235-251 [PMID: 28000083]
  47. PLoS One. 2011;6(9):e25342 [PMID: 21966504]
  48. Cognition. 1994 Apr-Jun;50(1-3):7-15 [PMID: 8039375]
  49. PLoS One. 2013 May 29;8(5):e63058 [PMID: 23734175]
  50. Behav Brain Res. 2018 Jan 30;337:17-33 [PMID: 28958752]
  51. Behav Neurosci. 2016 Feb;130(1):50-61 [PMID: 26653713]
  52. Behav Processes. 2017 Dec;145:1-9 [PMID: 28939341]
  53. Chronobiol Int. 2012 Feb;29(1):43-54 [PMID: 22217100]
  54. Alzheimers Res Ther. 2019 Jan 12;11(1):6 [PMID: 30636629]
  55. Biol Lett. 2014 Aug;10(8): [PMID: 25165453]
  56. J Sleep Res. 2007 Sep;16(3):245-52 [PMID: 17716272]
  57. Curr Biol. 2019 Jun 17;29(12):2066-2074.e5 [PMID: 31155352]
  58. Behav Brain Res. 2019 Oct 3;371:111971 [PMID: 31129233]
  59. Behav Brain Res. 2016 Mar 1;300:97-105 [PMID: 26698397]
  60. Judgm Decis Mak. 2008 Jun 1;3(5):389-395 [PMID: 19844596]
  61. Behav Processes. 2019 Jul;164:143-149 [PMID: 31071386]
  62. BMC Neurosci. 2005 May 28;6:37 [PMID: 15921529]
  63. Behav Brain Sci. 2019 Jan;42:e42 [PMID: 30940256]
  64. Neurobiol Learn Mem. 2016 Sep;133:233-256 [PMID: 27427327]
  65. Exp Clin Psychopharmacol. 2019 Apr;27(2):178-201 [PMID: 30570275]
  66. Behav Processes. 2019 Jul;164:178-185 [PMID: 31082477]
  67. Behav Brain Res. 2013 Nov 1;256:1-4 [PMID: 23896052]
  68. Psychol Addict Behav. 2020 Feb;34(1):218-229 [PMID: 31233324]
  69. PLoS One. 2011;6(12):e28801 [PMID: 22216113]
  70. Science. 2007 Oct 26;318(5850):602-6 [PMID: 17962553]
  71. Sleep. 2018 Nov 1;41(11): [PMID: 30304537]
  72. Nature. 2008 Jun 12;453(7197):917-20 [PMID: 18548069]
  73. Nat Sci Sleep. 2020 Sep 29;12:679-691 [PMID: 33061725]
  74. Ann Neurol. 2017 Sep;82(3):409-418 [PMID: 28833531]
  75. Neurobiol Learn Mem. 2015 Jan;117:60-70 [PMID: 24642448]
  76. Behav Res Methods. 2006 Aug;38(3):470-8 [PMID: 17186757]
  77. Psychon Bull Rev. 2012 Oct;19(5):884-91 [PMID: 22733219]
  78. Psychopharmacology (Berl). 2020 Jul;237(7):1893-1908 [PMID: 32363438]
  79. Anim Cogn. 2015 Mar;18(2):561-72 [PMID: 25527296]
  80. Nat Sci Sleep. 2020 May 27;12:309-324 [PMID: 32547280]
  81. Sleep Med Rev. 2018 Oct;41:185-196 [PMID: 29934128]
  82. Horm Behav. 2016 Mar;79:37-44 [PMID: 26774464]
  83. Addiction. 2018 Dec;113(12):2173-2181 [PMID: 30047179]
  84. Behav Processes. 2012 Feb;89(2):104-14 [PMID: 21925575]
  85. Neurosci Lett. 2016 Mar 23;617:225-31 [PMID: 26905669]
  86. J Neurosci. 2012 May 16;32(20):6937-46 [PMID: 22593062]
  87. J Neurosci. 2011 Nov 23;31(47):17103-12 [PMID: 22114279]
  88. Pharmacol Biochem Behav. 2018 Aug;171:20-29 [PMID: 29782943]
  89. J Sleep Res. 2006 Mar;15(1):7-13 [PMID: 16489997]
  90. Psychopharmacology (Berl). 2016 Sep;233(17):3135-47 [PMID: 27417550]
  91. Physiol Behav. 1999 Aug 1;67(1):99-105 [PMID: 10463635]
  92. Neuropsychopharmacology. 2019 Jul;44(8):1354-1361 [PMID: 30986818]
  93. Psychon Bull Rev. 2016 Apr;23(2):593-600 [PMID: 26286883]

Grants

  1. 40-42600-98-216/ZonMw
  2. 313-99-310 and 051-04-010/NWO
  3. R2N/Federal State of Lower Saxony

Word Cloud

Created with Highcharts 10.0.0sleepdecisionmakingdecisionsriskyAnimalmodelsrisk-baseddeprivationhumansriskcanavailableobjectivescopingreviewtaskprobabilitydiscountingleverresultedrewardRats0AnimalsincludingfrequentlymakeinvolvinguncertaintyDifferentstrategiesadvantageousdependingcircumstancesShortdurationseemsassociatedincreasemechanisticunderstandinglittledataconcerningeffectscombinedprimary-meta-researchexplorerelationshipanimalsfirstcreateoverviewanimalperformedsystematicsearchesPubmedPsychinforetrieved712references235includeddescribedrodentsnon-humanprimatesbirdspigshoney-beesdiscussdesignsmodelvaliditysecondapplyknowledgeperformpilotstudyeffecttrainedtestedmaleWistarrats"safe"always1"risky"4rewardsadaptedpreferencesvariationsprobabilities<00112hlightphaseclearlyalterpreference=21Risk-BasedDecisionMaking:SystematicScopingReviewModelsPilotStudyEffectsSleepDeprivationgambling

Similar Articles

Cited By (1)