Volatile Fatty Acids as Carbon Sources for Polyhydroxyalkanoates Production.

Karolina Szacherska, Piotr Oleskowicz-Popiel, Slawomir Ciesielski, Justyna Mozejko-Ciesielska
Author Information
  1. Karolina Szacherska: Department of Microbiology and Mycology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland. ORCID
  2. Piotr Oleskowicz-Popiel: Water Supply and Bioeconomy Division, Faculty of Environmental Engineering and Energy, Poznan University of Technology, 60-965 Poznan, Poland. ORCID
  3. Slawomir Ciesielski: Department of Environmental Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland. ORCID
  4. Justyna Mozejko-Ciesielska: Department of Microbiology and Mycology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland. ORCID

Abstract

Waste of industrial origin produced from synthetic materials are a serious threat to the natural environment. The ending resources of fossil raw materials and increasingly restrictive legal standards for the management of plastic waste have led to research on the use of biopolymers, which, due to their properties, may be an ecological alternative to currently used petrochemical polymers. Polyhydroxyalkanoates (PHAs) have gained much attention in recent years as the next generation of environmentally friendly materials. Currently, a lot of research is being done to reduce the costs of the biological process of PHA synthesis, which is the main factor limiting the production of PHAs on the industrial scale. The volatile fatty acids (VFAs) produced by anaerobic digestion from organic industrial and food waste, and various types of wastewater could be suitable carbon sources for PHA production. Thus, reusing the organic waste, while reducing the future fossil fuel, originated from plastic waste. PHA production from VFAs seem to be a good approach since VFAs composition determines the constituents of PHAs polymer and is of great influence on its properties. In order to reduce the overall costs of PHA production to a more reasonable level, it will be necessary to design a bioprocess that maximizes VFAs production, which will be beneficial for the PHA synthesis. Additionally, a very important factor that affects the profitable production of PHAs from VFAs is the selection of a microbial producer that will effectively synthesize the desired bioproduct. PHA production from VFAs has gained significant interest since VFAs composition determines the constituents of PHA polymer. Thus far, the conversion of VFAs into PHAs using pure bacterial cultures has received little attention, and the majority of studies have used mixed microbial communities for this purpose. This review discusses the current state of knowledge on PHAs synthesized by microorganisms cultured on VFAs.

Keywords

References

  1. J Biotechnol. 2006 Mar 23;122(2):226-38 [PMID: 16253370]
  2. Biotechnol Bioeng. 2004 Jul 20;87(2):145-60 [PMID: 15236243]
  3. Chemosphere. 2013 May;91(8):1094-8 [PMID: 23415489]
  4. Bioresour Technol. 2016 Jan;200:413-9 [PMID: 26512866]
  5. Heliyon. 2020 Sep 16;6(9):e04891 [PMID: 32995604]
  6. Bioresour Technol. 2008 May;99(8):2724-35 [PMID: 17697778]
  7. Water Res. 2002 Mar;36(5):1167-80 [PMID: 11905444]
  8. Int J Biol Macromol. 1991 Apr;13(2):83-8 [PMID: 1888716]
  9. Bioresour Technol. 2013 Jan;128:533-8 [PMID: 23201909]
  10. J Biotechnol. 2011 Jan 10;151(1):66-76 [PMID: 21034785]
  11. J Biotechnol. 2007 Jul 15;130(4):411-21 [PMID: 17602776]
  12. Bioresour Technol. 2008 Feb;99(3):509-16 [PMID: 17360180]
  13. Bioresour Technol. 2012 Jan;103(1):313-21 [PMID: 22055090]
  14. Int J Biol Macromol. 2019 Apr 1;126:1085-1092 [PMID: 30610947]
  15. Bioresour Technol. 2009 Jul;100(13):3403-9 [PMID: 19297150]
  16. Waste Manag. 2016 Dec;58:62-69 [PMID: 27530082]
  17. J Appl Microbiol. 2009 Jun;106(6):1996-2005 [PMID: 19320958]
  18. Bioresour Technol. 2018 Jan;248(Pt A):68-78 [PMID: 28693950]
  19. Bioengineering (Basel). 2017 Jun 11;4(2): [PMID: 28952534]
  20. Appl Biochem Biotechnol. 2008 Dec;151(2-3):333-41 [PMID: 18386184]
  21. Indian J Microbiol. 2017 Mar;57(1):39-47 [PMID: 28148978]
  22. Bioresour Technol. 2009 Feb;100(3):1399-405 [PMID: 18945612]
  23. Bioresour Technol. 2013 Feb;129:553-60 [PMID: 23270719]
  24. Bioresour Technol. 2015 Apr;182:103-113 [PMID: 25682230]
  25. Appl Microbiol Biotechnol. 2014 Jan;98(2):611-20 [PMID: 24162086]
  26. Chem Biol Interact. 1998 May 15;113(2):117-31 [PMID: 9717513]
  27. Bioresour Technol. 2018 Jul;260:105-114 [PMID: 29625281]
  28. Environ Sci Pollut Res Int. 2019 Dec;26(35):35509-35522 [PMID: 31111388]
  29. Biotechnol Adv. 2004 Jan;22(3):261-79 [PMID: 14665402]
  30. J Biosci Bioeng. 2003;95(1):77-81 [PMID: 16233370]
  31. Biomacromolecules. 2009 Apr 13;10(4):670-6 [PMID: 19193058]
  32. Indian J Microbiol. 2018 Mar;58(1):33-38 [PMID: 29434395]
  33. Environ Int. 2019 Jun;127:625-644 [PMID: 30991219]
  34. Trends Biotechnol. 2016 Nov;34(11):852-855 [PMID: 27427264]
  35. Appl Microbiol Biotechnol. 2000 Apr;53(4):435-40 [PMID: 10803900]
  36. J Biotechnol. 1998 Oct 27;65(2-3):127-61 [PMID: 9828458]
  37. J Biotechnol. 2014 Sep 20;185:19-27 [PMID: 24915131]
  38. Waste Manag. 2017 Oct;68:96-102 [PMID: 28629710]
  39. J Hazard Mater. 2016 Apr 5;306:332-339 [PMID: 26780589]
  40. Bioresour Technol. 2010 Dec;101(23):9382-6 [PMID: 20667721]
  41. Waste Manag. 2018 Dec;82:15-25 [PMID: 30509577]
  42. Bioresour Technol. 2010 Nov;101(22):8902-6 [PMID: 20620054]
  43. J Ind Microbiol Biotechnol. 2016 Jun;43(6):807-16 [PMID: 26992903]
  44. Water Res. 2003 Sep;37(15):3602-11 [PMID: 12867326]
  45. Bioprocess Biosyst Eng. 2003 Jul;25(6):377-85 [PMID: 13680343]
  46. Braz J Microbiol. 2014 Aug 29;45(2):395-402 [PMID: 25242921]
  47. Environ Sci Technol. 2009 Jun 15;43(12):4373-80 [PMID: 19603649]
  48. Front Bioeng Biotechnol. 2020 Mar 17;8:169 [PMID: 32258007]
  49. Bioresour Technol. 2020 Mar;299:122629 [PMID: 31881436]
  50. Appl Microbiol Biotechnol. 2007 Jun;75(3):475-85 [PMID: 17453197]
  51. Lett Appl Microbiol. 2008 Mar;46(3):350-7 [PMID: 18221276]
  52. Macromol Biosci. 2007 Feb 12;7(2):218-26 [PMID: 17295410]
  53. Bioresour Technol. 2010 Apr;101(8):2825-36 [PMID: 20044250]
  54. Waste Manag. 2008;28(1):164-9 [PMID: 17276666]
  55. Molecules. 2020 Oct 13;25(20): [PMID: 33065965]
  56. Bioprocess Biosyst Eng. 2017 May;40(5):781-789 [PMID: 28204983]
  57. J Basic Microbiol. 2018 Mar;58(3):247-254 [PMID: 29314110]
  58. J Biotechnol. 2013 Oct 20;168(2):234-9 [PMID: 23751505]
  59. Bioprocess Biosyst Eng. 2010 Nov;33(9):1077-85 [PMID: 20589397]
  60. J Zhejiang Univ Sci B. 2005 Nov;6(11):1076-80 [PMID: 16252341]
  61. Water Res. 2018 Jun 1;136:180-191 [PMID: 29505919]
  62. Waste Manag. 2019 Jun 1;92:21-29 [PMID: 31160023]
  63. Bioresour Technol. 2011 May;102(10):6159-66 [PMID: 21463934]

Grants

  1. 504101/0713/SBAD/0939/Poznan University of Technology
  2. POWR.03.02.00-00-I034/16-00/European Social Fund

Word Cloud

Created with Highcharts 10.0.0VFAsPHAproductionPHAswasteindustrialmaterialswillproducedfossilplasticresearchpropertiesusedpolymersPolyhydroxyalkanoatesgainedattentionreducecostssynthesisfactorvolatilefattyacidsorganicThussincecompositiondeterminesconstituentspolymermicrobialWasteoriginsyntheticseriousthreatnaturalenvironmentendingresourcesrawincreasinglyrestrictivelegalstandardsmanagementledusebiopolymersduemayecologicalalternativecurrentlypetrochemicalmuchrecentyearsnextgenerationenvironmentallyfriendlyCurrentlylotdonebiologicalprocessmainlimitingscaleanaerobicdigestionfoodvarioustypeswastewatersuitablecarbonsourcesreusingreducingfuturefueloriginatedseemgoodapproachgreatinfluenceorderoverallreasonablelevelnecessarydesignbioprocessmaximizesbeneficialAdditionallyimportantaffectsprofitableselectionproducereffectivelysynthesizedesiredbioproductsignificantinterestfarconversionusingpurebacterialculturesreceivedlittlemajoritystudiesmixedcommunitiespurposereviewdiscussescurrentstateknowledgesynthesizedmicroorganismsculturedVolatileFattyAcidsCarbonSourcesProductionbiodegradablebioproductspolyhydroxyalkanoatesstream

Similar Articles

Cited By