Substituent Effects on the Solubility and Electronic Properties of the Cyanine Dye Cy5: Density Functional and Time-Dependent Density Functional Theory Calculations.

Austin Biaggne, William B Knowlton, Bernard Yurke, Jeunghoon Lee, Lan Li
Author Information
  1. Austin Biaggne: Micron School of Materials Science and Engineering, Boise State University, Boise, ID 83725, USA. ORCID
  2. William B Knowlton: Micron School of Materials Science and Engineering, Boise State University, Boise, ID 83725, USA.
  3. Bernard Yurke: Micron School of Materials Science and Engineering, Boise State University, Boise, ID 83725, USA.
  4. Jeunghoon Lee: Micron School of Materials Science and Engineering, Boise State University, Boise, ID 83725, USA.
  5. Lan Li: Micron School of Materials Science and Engineering, Boise State University, Boise, ID 83725, USA. ORCID

Abstract

The aggregation ability and exciton dynamics of dyes are largely affected by properties of the dye monomers. To facilitate aggregation and improve excitonic function, dyes can be engineered with substituents to exhibit optimal key properties, such as hydrophobicity, static dipole moment differences, and transition dipole moments. To determine how electron donating (D) and electron withdrawing (W) substituents impact the solvation, static dipole moments, and transition dipole moments of the pentamethine indocyanine dye Cy5, density functional theory (DFT) and time-dependent (TD-) DFT calculations were performed. The inclusion of substituents had large effects on the solvation energy of Cy5, with pairs of withdrawing substituents (W-W pairs) exhibiting the most negative solvation energies, suggesting dyes with W-W pairs are more soluble than others. With respect to pristine Cy5, the transition dipole moment was relatively unaffected upon substitution while numerous W-W pairs and pairs of donating and withdrawing substituents (D-W pairs) enhanced the static dipole difference. The increase in static dipole difference was correlated with an increase in the magnitude of the sum of the Hammett constants of the substituents on the dye. The results of this study provide insight into how specific substituents affect Cy5 monomers and which pairs can be used to engineer dyes with desired properties.

Keywords

References

  1. J Photochem Photobiol B. 2019 Oct;199:111595 [PMID: 31470269]
  2. Angew Chem Int Ed Engl. 2011 Apr 4;50(15):3376-410 [PMID: 21442690]
  3. Chemphyschem. 2011 Feb 25;12(3):634-44 [PMID: 21275034]
  4. J Phys Chem B. 2018 May 17;122(19):5020-5029 [PMID: 29698610]
  5. Nat Chem. 2013 Aug;5(8):692-7 [PMID: 23881501]
  6. J Mol Model. 2016 Nov;22(11):260 [PMID: 27714534]
  7. Molecules. 2018 Sep 01;23(9): [PMID: 30200488]
  8. J Phys Chem A. 2018 Mar 1;122(8):2086-2095 [PMID: 29420037]
  9. Phys Chem Chem Phys. 2018 Mar 28;20(13):8554-8563 [PMID: 29542743]
  10. Chem Phys. 2008 Aug 22;357(1-3):79-84 [PMID: 20617102]
  11. Chem Commun (Camb). 2013 Jun 11;49(46):5298-300 [PMID: 23636273]
  12. ACS Nano. 2019 Mar 26;13(3):2986-2994 [PMID: 30758934]
  13. J Phys Chem A. 2016 Dec 22;120(50):9941-9947 [PMID: 27934475]
  14. J Phys Chem B. 2014 Jan 9;118(1):152-63 [PMID: 24328104]
  15. J Phys Chem A. 2014 Jul 31;118(30):5652-6 [PMID: 25014651]
  16. ACS Photonics. 2015 Mar 18;2(3):398-404 [PMID: 25839049]
  17. Org Biomol Chem. 2015 Oct 21;13(39):9993-10006 [PMID: 26289381]
  18. Phys Chem Chem Phys. 2011 Dec 28;13(48):21273-81 [PMID: 22025129]
  19. J Mol Model. 2013 May;19(5):2079-90 [PMID: 23149760]
  20. J Phys Chem A. 2010 Mar 18;114(10):3551-5 [PMID: 20155959]
  21. Science. 1997 May 23;276(5316):1233-6 [PMID: 9157876]
  22. J Phys Chem A. 2017 Feb 16;121(6):1213-1222 [PMID: 28103041]
  23. J Phys Chem A. 2018 Nov 21;122(46):8989-8997 [PMID: 30380862]
  24. Phys Chem Chem Phys. 2013 Dec 14;15(46):20210-9 [PMID: 24162782]
  25. J Am Chem Soc. 2018 Mar 28;140(12):4253-4258 [PMID: 29502406]
  26. J Chem Theory Comput. 2016 Aug 9;12(8):3993-4003 [PMID: 27385324]
  27. J Phys Chem B. 2009 May 7;113(18):6378-96 [PMID: 19366259]
  28. Langmuir. 2011 Feb 15;27(4):1472-9 [PMID: 21174432]
  29. J Phys Chem A. 2017 Sep 21;121(37):6905-6916 [PMID: 28813152]
  30. Bioconjug Chem. 2002 May-Jun;13(3):387-91 [PMID: 12009924]
  31. Nat Commun. 2016 Sep 29;7:12949 [PMID: 27680284]
  32. Chem Rev. 2005 Aug;105(8):2999-3093 [PMID: 16092826]
  33. J Phys Chem Lett. 2019 May 16;10(10):2386-2392 [PMID: 31010285]
  34. Nature. 2007 Apr 12;446(7137):782-6 [PMID: 17429397]
  35. Phys Chem Chem Phys. 2013 Nov 28;15(44):19465-77 [PMID: 24129400]
  36. Radiat Res. 1963 Sep;20:55-70 [PMID: 14061481]
  37. Chem Rev. 2017 Jan 25;117(2):249-293 [PMID: 27428615]
  38. J Chem Theory Comput. 2012 Apr 10;8(4):1255-9 [PMID: 26596742]

Grants

  1. N00014-19-1-2615/Office of Naval Research

MeSH Term

Carbocyanines
Density Functional Theory
Electronics
Molecular Structure
Physical Phenomena
Quantum Theory
Solubility
Thermodynamics

Chemicals

Carbocyanines
cyanine dye 5

Word Cloud

Created with Highcharts 10.0.0dipolesubstituentspairsCy5dyesdyestaticpropertiesmomenttransitionmomentswithdrawingsolvationdensityfunctionaltheoryW-WaggregationexcitonmonomerscanelectrondonatingDFTdifferenceincreaseDensityFunctionalabilitydynamicslargelyaffectedfacilitateimproveexcitonicfunctionengineeredexhibitoptimalkeyhydrophobicitydifferencesdetermineDWimpactpentamethineindocyaninetime-dependentTD-calculationsperformedinclusionlargeeffectsenergyexhibitingnegativeenergiessuggestingsolubleothersrespectpristinerelativelyunaffecteduponsubstitutionnumerousD-WenhancedcorrelatedmagnitudesumHammettconstantsresultsstudyprovideinsightspecificaffectusedengineerdesiredSubstituentEffectsSolubilityElectronicPropertiesCyanineDyeCy5:Time-DependentTheoryCalculationscyaninesolubilitytimedependent

Similar Articles

Cited By