Transgenerational Effects of Hexavalent Chromium on Marine Medaka () Reveal Complex Transgenerational Adaptation in Offspring.

Xiaomin Ni, Yingjia Shen
Author Information
  1. Xiaomin Ni: Key Laboratory of the Coastal and Wetland Ecosystems, Ministry of Education, Xiamen University, Xiamen 361005, China. ORCID
  2. Yingjia Shen: Key Laboratory of the Coastal and Wetland Ecosystems, Ministry of Education, Xiamen University, Xiamen 361005, China. ORCID

Abstract

Hexavalent chromium [Cr(VI)] pollution is one of most serious heavy metal pollutants in the coastal area and posed serious threats to marine organisms and human beings. Many studies have been conducted on its toxicological effects on living organisms from morphological to physiological aspects. However, there are few studies about the transgenerational toxicological of Cr(VI). In this study, we exposed adult marine medaka fishes with Cr(VI) and their offspring with Cr(VI) to examine transgenerational effects of Cr(VI). We found that there were mechanisms such as changing reproduction modes in males to compensate for impacts on the reproduction. There were differences and similarities between the parental effect and the environmental effect, with the former one causing more serious adverse effects on the offspring of Cr(VI)-exposed fish. It was noteworthy that there was an interaction between the parental and offspring treatment which leads to the attenuation of the parental effects on offspring when the offspring also underwent the same treatment. In addition, physiological adaptation has also been observed in fish to improve their fitness. Overall, effects of Cr(VI) on fish and their offspring were studied to pave a way to study the of mechanisms of adaptation.

Keywords

References

  1. Zebrafish. 2018 Apr;15(2):179-187 [PMID: 29293412]
  2. Mutat Res. 2006 Sep 19;608(1):16-28 [PMID: 16784884]
  3. Environ Sci Pollut Res Int. 2003;10(3):192-8 [PMID: 12846382]
  4. Xenobiotica. 1987 Mar;17(3):299-310 [PMID: 3107224]
  5. J Evol Biol. 2008 Sep;21(5):1189-200 [PMID: 18564347]
  6. Environ Toxicol Chem. 2015 Jun;34(6):1283-95 [PMID: 25565366]
  7. Gen Comp Endocrinol. 2015 Nov 1;223:66-72 [PMID: 26431611]
  8. Environ Res. 2005 Sep;99(1):72-8 [PMID: 16053930]
  9. Small. 2013 May 27;9(9-10):1608-18 [PMID: 23208995]
  10. Arch Environ Contam Toxicol. 2006 May;50(4):575-9 [PMID: 16453067]
  11. Toxicol Sci. 2001 Jun;61(2):304-13 [PMID: 11353139]
  12. Arch Environ Contam Toxicol. 1980;9(4):405-13 [PMID: 7406544]
  13. Environ Toxicol Chem. 2014 Aug;33(8):1697-704 [PMID: 24619970]
  14. Proc Biol Sci. 2012 Dec 22;279(1749):4893-900 [PMID: 23097519]
  15. Front Zool. 2005 Jan 17;2(1):1 [PMID: 15679952]
  16. Environ Toxicol. 2012 Jul;27(7):415-22 [PMID: 22707220]
  17. Toxicol Appl Pharmacol. 2003 Apr 1;188(1):1-5 [PMID: 12668116]
  18. Cryobiology. 1983 Aug;20(4):432-9 [PMID: 6617232]
  19. Aquat Toxicol. 2012 Nov 15;124-125:238-46 [PMID: 22982501]
  20. Biol Rev Camb Philos Soc. 2013 Aug;88(3):745-66 [PMID: 23445204]
  21. Mar Pollut Bull. 2011;63(5-12):347-9 [PMID: 21377175]
  22. Toxicon. 2004 Jul;44(1):59-66 [PMID: 15225563]
  23. Environ Sci Pollut Res Int. 2015 Nov;22(21):16371-83 [PMID: 25639250]
  24. Birth Defects Res. 2017 Feb 15;109(3):234-243 [PMID: 27918138]
  25. Aquat Toxicol. 2011 Sep;105(1-2):71-7 [PMID: 21684243]
  26. Methods Mol Biol. 2011;691:271-9 [PMID: 20972759]
  27. Ecotoxicol Environ Saf. 1989 Aug;18(1):15-26 [PMID: 2776686]
  28. Proc Natl Acad Sci U S A. 2012 Jun 5;109(23):9143-8 [PMID: 22615374]
  29. Neurotoxicol Teratol. 2015 Mar-Apr;48:9-17 [PMID: 25599607]
  30. Proc Biol Sci. 2010 May 22;277(1687):1581-7 [PMID: 20106851]
  31. PLoS One. 2014 Nov 03;9(11):e110524 [PMID: 25365426]
  32. Aquat Toxicol. 2016 Feb;171:59-68 [PMID: 26748265]
  33. Aquat Toxicol. 2014 Apr;149:116-25 [PMID: 24583292]
  34. PLoS One. 2014 Feb 05;9(2):e87753 [PMID: 24505309]
  35. Evolution. 2008 Jan;62(1):157-72 [PMID: 18067573]
  36. ALTEX. 2005;22(2):87-102 [PMID: 15953964]
  37. Fundam Appl Toxicol. 1983 Nov-Dec;3(6):502-6 [PMID: 6420217]
  38. Comp Biochem Physiol C Toxicol Pharmacol. 2020 May;231:108734 [PMID: 32151776]
  39. Genes Dev. 2002 Jan 1;16(1):6-21 [PMID: 11782440]
  40. Comp Biochem Physiol C Toxicol Pharmacol. 2010 Sep;152(3):338-45 [PMID: 20566315]

Grants

  1. 31671318/National Natural Science Foundation of China
  2. 2016YFC0502901/National Key R&D Program of China
  3. 20720190106/Fundamental Research Funds for the Central Universities

MeSH Term

Adaptation, Physiological
Animals
Chromium
DNA
Female
Fertilization
Hot Temperature
Male
Oryzias
Reproduction
Teratogens
Water Pollutants, Chemical

Chemicals

Teratogens
Water Pollutants, Chemical
Chromium
chromium hexavalent ion
DNA

Word Cloud

Created with Highcharts 10.0.0VIeffectsCroffspringserioustransgenerationalparentalfishadaptationHexavalentchromiumonemarineorganismsstudiestoxicologicalphysiologicalstudymechanismsreproductioneffectenvironmentaltreatmentalsoTransgenerational[Cr]pollutionheavymetalpollutantscoastalareaposedthreatshumanbeingsManyconductedlivingmorphologicalaspectsHoweverexposedadultmedakafishesexaminefoundchangingmodesmalescompensateimpactsdifferencessimilaritiesformercausingadverse-exposednoteworthyinteractionleadsattenuationunderwentadditionobservedimprovefitnessOverallstudiedpavewayEffectsChromiumMarineMedakaRevealComplexAdaptationOffspringDNAOryziasmelastigmahexavalent

Similar Articles

Cited By