Plasmon-enhanced coherent anti-stokes Raman scattering vs plasmon-enhanced stimulated Raman scattering: Comparison of line shape and enhancement factor.

Cheng Zong, Yurun Xie, Meng Zhang, Yimin Huang, Chen Yang, Ji-Xin Cheng
Author Information
  1. Cheng Zong: Department of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215, USA.
  2. Yurun Xie: State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
  3. Meng Zhang: Department of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215, USA.
  4. Yimin Huang: Department of Chemistry, Boston University, Boston, Massachusetts 02215, USA.
  5. Chen Yang: Department of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215, USA. ORCID
  6. Ji-Xin Cheng: Department of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215, USA. ORCID

Abstract

Plasmon-enhanced coherent Raman scattering microscopy has reached single-molecule detection sensitivity. Due to the different driven fields, there are significant differences between a coherent Raman scattering process and its plasmon-enhanced derivative. The commonly accepted line shapes for coherent anti-Stokes Raman scattering and stimulated Raman scattering do not hold for the plasmon-enhanced condition. Here, we present a theoretical model that describes the spectral line shapes in plasmon-enhanced coherent anti-Stokes Raman scattering (PECARS). Experimentally, we measured PECARS and plasmon-enhanced stimulated Raman scattering (PESRS) spectra of 4-mercaptopyridine adsorbed on the self-assembled Au nanoparticle (NP) substrate and aggregated Au NP colloids. The PECARS spectra show a nondispersive line shape, while the PESRS spectra exhibit a dispersive line shape. PECARS shows a higher signal to noise ratio and a larger enhancement factor than PESRS from the same specimen. It is verified that the nonresonant background in PECARS originates from the photoluminescence of nanostructures. The decoupling of background and the vibrational resonance component results in the nondispersive line shape in PECARS. More local electric field enhancements are involved in the PECARS process than in PESRS, which results in a higher enhancement factor in PECARS. The current work provides new insight into the mechanism of plasmon-enhanced coherent Raman scattering and helps to optimize the experimental design for ultrasensitive chemical imaging.

References

  1. Nano Lett. 2018 Sep 12;18(9):5791-5796 [PMID: 30064221]
  2. Nat Methods. 2019 Sep;16(9):830-842 [PMID: 31471618]
  3. Analyst. 2010 May;135(5):1138-46 [PMID: 20419267]
  4. Cell Stem Cell. 2017 Mar 2;20(3):303-314.e5 [PMID: 28041894]
  5. J Phys Chem Lett. 2016 Nov 17;7(22):4629-4634 [PMID: 27802054]
  6. Proc Natl Acad Sci U S A. 2015 Sep 15;112(37):11624-9 [PMID: 26324899]
  7. Proc Natl Acad Sci U S A. 2005 Nov 15;102(46):16807-12 [PMID: 16263923]
  8. J Chem Phys. 2016 Sep 7;145(9):094106 [PMID: 27608988]
  9. J Phys Chem B. 2016 Oct 4;120(40):10569-10580 [PMID: 27668810]
  10. Nature. 2017 Apr 27;544(7651):465-470 [PMID: 28424513]
  11. Science. 2010 Dec 3;330(6009):1368-70 [PMID: 21127249]
  12. Annu Rev Anal Chem (Palo Alto Calif). 2016 Jun 12;9(1):69-93 [PMID: 27306307]
  13. J Phys Chem Lett. 2011 May 19;2(10):1199-203 [PMID: 26295326]
  14. Nano Lett. 2011 Dec 14;11(12):5339-43 [PMID: 22074256]
  15. Anal Chem. 2014 Dec 16;86(24):12250-7 [PMID: 25418952]
  16. Opt Express. 2013 Jun 3;21(11):13864-74 [PMID: 23736639]
  17. Adv Sci (Weinh). 2020 Aug 16;7(19):2001452 [PMID: 33042757]
  18. Nat Biomed Eng. 2017;1: [PMID: 28955599]
  19. Nat Commun. 2017 Apr 24;8:15117 [PMID: 28436473]
  20. Opt Lett. 2005 May 1;30(9):1024-6 [PMID: 15906991]
  21. Annu Rev Biomed Eng. 2015;17:415-45 [PMID: 26514285]
  22. Annu Rev Anal Chem (Palo Alto Calif). 2008;1:883-909 [PMID: 20636101]
  23. Nat Photonics. 2014;8:627-634 [PMID: 25621002]
  24. Curr Opin Genet Dev. 2011 Oct;21(5):585-90 [PMID: 21945002]
  25. Annu Rev Biophys. 2019 May 6;48:347-369 [PMID: 30892920]
  26. Science. 2015 Nov 27;350(6264):aaa8870 [PMID: 26612955]
  27. Nat Commun. 2018 Nov 19;9(1):4858 [PMID: 30451866]
  28. Nano Lett. 2012 Nov 14;12(11):5989-94 [PMID: 23094821]
  29. Nat Commun. 2019 Nov 21;10(1):5318 [PMID: 31754221]
  30. Nat Commun. 2014 Jul 14;5:4424 [PMID: 25020075]
  31. Chem Rev. 2011 Jun 8;111(6):3858-87 [PMID: 21434614]
  32. Nat Chem. 2014 Jul;6(7):614-22 [PMID: 24950332]

Grants

  1. R35 GM136223/NIGMS NIH HHS

Word Cloud

Created with Highcharts 10.0.0RamanscatteringPECARScoherentplasmon-enhancedlinePESRSshapestimulatedspectraenhancementfactorPlasmon-enhancedprocessshapesanti-StokesAuNPnondispersivehigherbackgroundresultsmicroscopyreachedsingle-moleculedetectionsensitivityDuedifferentdrivenfieldssignificantdifferencesderivativecommonlyacceptedholdconditionpresenttheoreticalmodeldescribesspectralExperimentallymeasured4-mercaptopyridineadsorbedself-assemblednanoparticlesubstrateaggregatedcolloidsshowexhibitdispersiveshowssignalnoiseratiolargerspecimenverifiednonresonantoriginatesphotoluminescencenanostructuresdecouplingvibrationalresonancecomponentlocalelectricfieldenhancementsinvolvedcurrentworkprovidesnewinsightmechanismhelpsoptimizeexperimentaldesignultrasensitivechemicalimaginganti-stokesvsscattering:Comparison

Similar Articles

Cited By