Lamarckian Evolution of Simulated Modular Robots.

Milan Jelisavcic, Kyrre Glette, Evert Haasdijk, A E Eiben
Author Information
  1. Milan Jelisavcic: Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, Netherlands.
  2. Kyrre Glette: RITMO, Department of Informatics, University of Oslo, Oslo, Norway.
  3. Evert Haasdijk: Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, Netherlands.
  4. A E Eiben: Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, Netherlands.

Abstract

We study evolutionary robot systems where not only the robot brains but also the robot bodies are evolvable. Such systems need to include a learning period right after 'birth' to acquire a controller that fits the newly created body. In this paper we investigate the possibility of bootstrapping infant robot learning through employing Lamarckian inheritance of parental controllers. In our system controllers are encoded by a combination of a morphology dependent component, a Central Pattern Generator (CPG), and a morphology independent part, a Compositional Pattern Producing Network (CPPN). This makes it possible to transfer the CPPN part of controllers between different morphologies and to create a Lamarckian system. We conduct experiments with simulated modular robots whose fitness is determined by the speed of locomotion, establish the benefits of inheriting optimized parental controllers, shed light on the conditions that influence these benefits, and observe that changing the way controllers are evolved also impacts the evolved morphologies.

Keywords

References

  1. Artif Life. 2017 Spring;23(2):206-235 [PMID: 28513201]
  2. Nature. 2000 Aug 31;406(6799):974-8 [PMID: 10984047]
  3. Artif Life. 2017 Winter;23(1):80-104 [PMID: 28140628]
  4. Neural Netw. 2008 May;21(4):642-53 [PMID: 18555958]
  5. Evol Comput. 2002 Summer;10(2):99-127 [PMID: 12180173]
  6. Artif Life. 2009 Spring;15(2):185-212 [PMID: 19199382]
  7. PLoS One. 2015 Jun 19;10(6):e0128444 [PMID: 26091255]
  8. Genetics. 2013 Aug;194(4):793-805 [PMID: 23908372]
  9. Evol Intell. 2012 Dec;5(4):261-272 [PMID: 23144668]
  10. Nat Neurosci. 2014 Jan;17(1):89-96 [PMID: 24292232]
  11. Science. 2006 Nov 17;314(5802):1118-21 [PMID: 17110570]
  12. Nature. 2015 May 28;521(7553):476-82 [PMID: 26017447]
  13. J Am Chem Soc. 2011 Dec 21;133(50):20064-7 [PMID: 21961523]

Word Cloud

Created with Highcharts 10.0.0controllersrobotLamarckianlearningevolutionarysystemsalsoparentalsystemmorphologyPatternpartCPPNmorphologiesmodularrobotsbenefitsevolvedevolutionstudybrainsbodiesevolvableneedincludeperiodright'birth'acquirecontrollerfitsnewlycreatedbodypaperinvestigatepossibilitybootstrappinginfantemployinginheritanceencodedcombinationdependentcomponentCentralGeneratorCPGindependentCompositionalProducingNetworkmakespossibletransferdifferentcreateconductexperimentssimulatedwhosefitnessdeterminedspeedlocomotionestablishinheritingoptimizedshedlightconditionsinfluenceobservechangingwayimpactsEvolutionSimulatedModularRobotsartificiallifeembodiedroboticsonline

Similar Articles

Cited By