Low-dose Drosera rotundifolia induces gene expression changes in 16HBE human bronchial epithelial cells.

Fabio Arruda-Silva, Paolo Bellavite, Marta Marzotto
Author Information
  1. Fabio Arruda-Silva: Department of Medicine, University of Verona, strada Le Grazie 8, 37134, Verona, Italy. fabio.arrudaesilva@univr.it.
  2. Paolo Bellavite: Department of Medicine, University of Verona, strada Le Grazie 8, 37134, Verona, Italy.
  3. Marta Marzotto: Department of Medicine, University of Verona, strada Le Grazie 8, 37134, Verona, Italy.

Abstract

Drosera rotundifolia has been traditionally used for the treatment of respiratory diseases in phytotherapy and homeopathy. The mechanisms of action recognized so far are linked to the known effects of specific components, such as flavonoids, but are not completely understood. In this study, the biological functions of D. rotundifolia were explored in vitro following the treatment of bronchial epithelial cells, which are the potential targets of the pharmacological effects of the herbal medicine. To do so, the whole plant ethanolic extract was 1000-fold diluted in water (D. rotundifolia 3×) and added to a 16HBE human cell line culture for 3 h or 6 h. The effects on gene expression of the treatments and corresponding controls were then investigated by RNA sequencing. The differentially expressed genes were validated through RT-qPCR, and the enriched biological functions involved in the effects of treatment were investigated. D. rotundifolia 3× did not impair cell viability and was shown to be a stimulant of cell functions by regulating the expression of dozens of genes after 3 h, and the effects were amplified after 6 h of treatment. The main differentially expressed genes encoded ligands of epithelial growth factor receptor, proteins involved in xenobiotic detoxification and cytokines, suggesting that D. rotundifolia 3× could stimulate self-repair systems, which are impaired in airway diseases. Furthermore, D. rotundifolia 3× acts on a complex and multifaceted set of genes and may potentially affect different layers of the bronchial mucosa.

References

  1. Homeopathy. 2015 Apr;104(2):139-60 [PMID: 25869978]
  2. Anal Bioanal Chem. 2011 Jun;400(8):2565-76 [PMID: 21298259]
  3. Eur Respir J. 2012 Feb;39(2):419-28 [PMID: 21778164]
  4. BMC Complement Altern Med. 2014 Mar 19;14:104 [PMID: 24642002]
  5. Am J Physiol Cell Physiol. 2013 Dec 1;305(11):C1170-84 [PMID: 24088896]
  6. Environ Health Perspect. 2007 Sep;115(9):1325-32 [PMID: 17805423]
  7. Sci Rep. 2020 Jan 14;10(1):257 [PMID: 31937840]
  8. J Immunol. 2019 May 1;202(9):2519-2526 [PMID: 31010841]
  9. BMC Complement Altern Med. 2007 Mar 02;7:7 [PMID: 17335565]
  10. Med Sci Law. 2014 Jan;54(1):22-7 [PMID: 23842479]
  11. Phytother Res. 2005 Apr;19(4):323-6 [PMID: 16041727]
  12. Multidiscip Respir Med. 2015 Aug 07;10(1):25 [PMID: 26251722]
  13. Homeopathy. 2020 May;109(2):51-64 [PMID: 31785597]
  14. Homeopathy. 2005 Oct;94(4):215-21 [PMID: 16226198]
  15. Complement Ther Med. 2016 Dec;29:229-234 [PMID: 27912951]
  16. Homeopathy. 2005 Apr;94(2):75-80 [PMID: 15892486]
  17. Homeopathy. 2020 May;109(2):42-50 [PMID: 31785596]
  18. Drug Res (Stuttg). 2018 Aug;68(8):444-449 [PMID: 29558782]
  19. Minerva Pediatr. 2018 Apr;70(2):117-126 [PMID: 28211646]
  20. Genome Biol. 2014;15(12):550 [PMID: 25516281]
  21. Pulm Pharmacol Ther. 2014 Feb;27(1):102-8 [PMID: 23714686]
  22. Eur J Immunol. 2008 Jun;38(6):1689-99 [PMID: 18421791]
  23. Eur J Pharm Biopharm. 2013 Jun;84(2):394-400 [PMID: 23313714]
  24. Front Biosci (Elite Ed). 2012 Jan 01;4:1669-82 [PMID: 22201984]
  25. J Clin Invest. 2019 Jun 17;129(7):2629-2639 [PMID: 31205028]
  26. Nucleic Acids Res. 2019 Jul 2;47(W1):W191-W198 [PMID: 31066453]
  27. J Integr Med. 2015 Nov;13(6):400-11 [PMID: 26559365]
  28. Genome Res. 2003 Nov;13(11):2498-504 [PMID: 14597658]
  29. F1000Res. 2015 Dec 30;4:1521 [PMID: 26925227]
  30. Mil Med Res. 2015 May 19;2:12 [PMID: 26045969]
  31. J Ethnopharmacol. 2009 Aug 17;125(1):90-6 [PMID: 19540325]
  32. Nat Methods. 2017 Apr;14(4):417-419 [PMID: 28263959]
  33. Blood. 2009 Jan 15;113(3):744-54 [PMID: 19005183]
  34. Evid Based Complement Alternat Med. 2014;2014:851263 [PMID: 25525452]
  35. Public Health Nutr. 2020 Oct;23(14):2548-2556 [PMID: 31996276]
  36. Eur Respir Rev. 2016 Jun;25(140):158-69 [PMID: 27246593]
  37. Homeopathy. 2014 Oct;103(4):239-49 [PMID: 25439040]
  38. Front Pharmacol. 2018 Dec 07;9:1429 [PMID: 30581387]
  39. Evid Based Complement Alternat Med. 2007 Jun;4(2):149-63 [PMID: 17549232]
  40. Arzneimittelforschung. 2004;54(7):402-5 [PMID: 15344845]
  41. Front Cell Infect Microbiol. 2017 May 12;7:176 [PMID: 28553619]
  42. Dose Response. 2016 Jan 06;14(1):1559325815626685 [PMID: 26788033]

MeSH Term

Bronchi
Drosera
Drug Administration Schedule
Epithelial Cells
Gene Expression
Humans
Plant Extracts
Sequence Analysis, RNA

Chemicals

Plant Extracts

Word Cloud

Created with Highcharts 10.0.0rotundifoliaeffectsDtreatmentgenesfunctionsbronchialepithelialcellexpressionDroseradiseasesbiologicalcells16HBEhuman3 h6 hgeneinvestigateddifferentiallyexpressedinvolvedtraditionallyusedrespiratoryphytotherapyhomeopathymechanismsactionrecognizedfarlinkedknownspecificcomponentsflavonoidscompletelyunderstoodstudyexploredvitrofollowingpotentialtargetspharmacologicalherbalmedicinewholeplantethanolicextract1000-folddilutedwateraddedlineculturetreatmentscorrespondingcontrolsRNAsequencingvalidatedRT-qPCRenriched3× didimpairviabilityshownstimulantregulatingdozensamplifiedmainencodedligandsgrowthfactorreceptorproteinsxenobioticdetoxificationcytokinessuggesting3× couldstimulateself-repairsystemsimpairedairwayFurthermore3× actscomplexmultifacetedsetmaypotentiallyaffectdifferentlayersmucosaLow-doseinduceschanges

Similar Articles

Cited By