Quantification of Tomographic Incompleteness in Cone-Beam Reconstruction.

Rolf Clackdoyle, Frédéric Noo
Author Information
  1. Rolf Clackdoyle: TIMC-IMAG laboratory (CNRS UMR 5525), Grenoble, France.
  2. Frédéric Noo: Utah Center for Advanced Imaging Research, University of Utah, Salt Lake City, USA.

Abstract

For situations of cone-beam scanning where the measurements are incomplete, we propose a method to quantify the severity of the missing information at each voxel. This incompleteness metric is geometric; it uses only the relative locations of all cone-beam vertices with respect to the voxel in question, and does not apply global information such as the object extent or the pattern of incompleteness of other voxels. The values are non-negative, with zero indicating "least incompleteness," i.e. minimal danger of incompleteness artifacts. The incompleteness value can be related to the severity of the potential reconstruction artifact at the voxel location, independent of reconstruction algorithm. We performed a computer simulation of x-ray sources along a circular trajectory, and used small multi-disk test-objects to examine the local effects of data incompleteness. The observed behavior of the reconstructed test-objects quantitatively matched the precalculated incompleteness values. A second simulation of a hypothetical SPECT breast imaging system used only 12 pinholes. Reconstructions were performed using analytic and iterative methods, and five reconstructed test-objects matched the behavior predicted by the incompleteness model. The model is based on known sufficiency conditions for data incompleteness, and provides strong predictive guidance for what can go wrong with incomplete cone-beam data.

References

  1. Phys Med Biol. 2011 Jul 7;56(13):4103-18 [PMID: 21693792]
  2. Eur J Nucl Med Mol Imaging. 2010 Oct;37(10):1887-902 [PMID: 20585775]
  3. Phys Med Biol. 1992 Mar;37(3):507-34 [PMID: 1565688]
  4. IEEE Trans Med Imaging. 1994;13(1):186-95 [PMID: 18218496]
  5. J Nucl Med. 2012 Dec;53(12):1897-903 [PMID: 23139084]
  6. IEEE Trans Med Imaging. 1994;13(1):196-211 [PMID: 18218497]
  7. IEEE Trans Med Imaging. 1992;11(3):342-50 [PMID: 18222876]
  8. Phys Med Biol. 2002 Aug 7;47(15):2599-609 [PMID: 12200927]
  9. Phys Med Biol. 2004 Mar 21;49(6):941-59 [PMID: 15104318]
  10. Med Phys. 2012 May;39(5):2405-16 [PMID: 22559610]
  11. Phys Med Biol. 1994 Mar;39(3):451-76 [PMID: 15559983]
  12. IEEE Trans Med Imaging. 2005 Jan;24(1):70-85 [PMID: 15638187]
  13. Med Phys. 2009 Feb;36(2):500-12 [PMID: 19291989]
  14. IEEE Trans Med Imaging. 2015 Feb;34(2):474-86 [PMID: 25291791]

Grants

  1. R01 EB000627/NIBIB NIH HHS

Word Cloud

Created with Highcharts 10.0.0incompletenesscone-beamvoxeltest-objectsdataincompleteseverityinformationvaluescanreconstructionperformedsimulationusedbehaviorreconstructedmatchedmodelsituationsscanningmeasurementsproposemethodquantifymissingmetricgeometricusesrelativelocationsverticesrespectquestionapplyglobalobjectextentpatternvoxelsnon-negativezeroindicating"least"ieminimaldangerartifactsvaluerelatedpotentialartifactlocationindependentalgorithmcomputerx-raysourcesalongcirculartrajectorysmallmulti-diskexaminelocaleffectsobservedquantitativelyprecalculatedsecondhypotheticalSPECTbreastimagingsystem12pinholesReconstructionsusinganalyticiterativemethodsfivepredictedbasedknownsufficiencyconditionsprovidesstrongpredictiveguidancegowrongQuantificationTomographicIncompletenessCone-BeamReconstruction

Similar Articles

Cited By