Turn to the Internet First? Using Online Medical Behavioral Data to Forecast COVID-19 Epidemic Trend.

Wensen Huang, Bolin Cao, Guang Yang, Ningzheng Luo, Naipeng Chao
Author Information
  1. Wensen Huang: School of Media and Communication, Shenzhen University, No. 3688 Nanhai Avenue, Nanshan District, Shenzhen, China.
  2. Bolin Cao: School of Media and Communication, Shenzhen University, No. 3688 Nanhai Avenue, Nanshan District, Shenzhen, China.
  3. Guang Yang: School of Media and Communication, Shenzhen University, No. 3688 Nanhai Avenue, Nanshan District, Shenzhen, China.
  4. Ningzheng Luo: Health 160, Shenzhen Ningyuan Technology Co., Ltd., Shenzhen, China.
  5. Naipeng Chao: School of Media and Communication, Shenzhen University, No. 3688 Nanhai Avenue, Nanshan District, Shenzhen, China.

Abstract

The surveillance and forecast of newly confirmed cases are important to mobilize medical resources and facilitate policymaking during a public health emergency. Digital surveillance using data available online has increasingly become a trend with the advancement of the Internet. In this study, we assessed the predictive value of multiple online medical behavioral data, including online medical consultation (OMC), online medical appointment (OMA), and online medical search (OMS) for the regional outbreak of coronavirus disease 2019 in Shenzhen, China during January 1, 2020 to March 5, 2020. Multivariate vector autoregression models were used for the prediction. The results identified a novel predictor, OMC, which can forecast the disease trend up to 2 days ahead of the official reports of confirmed cases from the local health department. OMS data had relatively weaker predictive power than OMC in our model, and OMA data failed to predict the confirmed cases. This study highlights the importance of OMC data and has implication in providing evidence-based guidelines for local authorities to evaluate risks and allocate resources during the pandemic.

Keywords

References

  1. PLoS Negl Trop Dis. 2019 Apr 15;13(4):e0007298 [PMID: 30986218]
  2. N Engl J Med. 2020 Mar 26;382(13):1199-1207 [PMID: 31995857]
  3. BMJ Open. 2020 Mar 24;10(3):e036098 [PMID: 32209633]
  4. J Med Internet Res. 2020 May 28;22(5):e19421 [PMID: 32452804]
  5. J Health Commun. 2012;17(8):960-78 [PMID: 22574697]
  6. N Engl J Med. 2013 Aug 1;369(5):401-4 [PMID: 23822655]
  7. Proc Natl Acad Sci U S A. 2020 May 26;117(21):11220-11222 [PMID: 32366658]
  8. Health Commun. 2021 Sep;36(10):1163-1175 [PMID: 32290679]
  9. PLoS One. 2011;6(8):e23610 [PMID: 21886802]
  10. Sci Rep. 2018 Jun 13;8(1):9038 [PMID: 29899360]
  11. Infect Dis (Lond). 2016 Apr;48(4):322-327 [PMID: 26654752]
  12. BMJ. 2020 Apr 6;369:m1373 [PMID: 32253180]
  13. N Engl J Med. 2009 May 21;360(21):2153-5, 2157 [PMID: 19423867]
  14. Online J Public Health Inform. 2019 Sep 19;11(2):e13 [PMID: 31632607]
  15. EPJ Data Sci. 2015;4: [PMID: 27990325]
  16. PLoS One. 2013 Dec 09;8(12):e83672 [PMID: 24349542]
  17. PLoS Negl Trop Dis. 2011 May;5(5):e1206 [PMID: 21647308]
  18. Nat Med. 2020 Apr;26(4):463-464 [PMID: 32284619]
  19. JAMA. 2020 Mar 17;323(11):1061-1069 [PMID: 32031570]
  20. PLoS One. 2013;8(2):e56176 [PMID: 23457520]
  21. Int J Infect Dis. 2020 Jun;95:221-223 [PMID: 32173572]
  22. PLoS Negl Trop Dis. 2017 Mar 6;11(3):e0005354 [PMID: 28263988]
  23. PLoS One. 2016 Mar 31;11(3):e0152688 [PMID: 27031524]
  24. Int J Med Inform. 2006 Aug;75(8):565-76 [PMID: 16298545]
  25. Epidemiol Infect. 2016 Jan;144(2):325-32 [PMID: 26135239]
  26. Int J Environ Res Public Health. 2020 Mar 31;17(7): [PMID: 32244425]
  27. J Med Internet Res. 2020 Apr 14;22(4):e18908 [PMID: 32250962]
  28. Am J Prev Med. 2014 Sep;47(3):341-7 [PMID: 24997572]
  29. J Med Internet Res. 2019 Mar 27;21(3):e10831 [PMID: 30916666]
  30. PLoS One. 2013 May 30;8(5):e64323 [PMID: 23750192]
  31. JMIR Public Health Surveill. 2020 Apr 21;6(2):e18700 [PMID: 32293582]
  32. PLoS Negl Trop Dis. 2017 Jan 13;11(1):e0005295 [PMID: 28085877]
  33. AMIA Annu Symp Proc. 2006;:244-8 [PMID: 17238340]
  34. Milbank Q. 2014 Mar;92(1):7-33 [PMID: 24597553]
  35. Emerg Infect Dis. 2009 Aug;15(8):1327-8 [PMID: 19751610]
  36. Healthc Inform Res. 2018 Oct;24(4):300-308 [PMID: 30443418]
  37. J Infect Dis. 2016 Dec 1;214(suppl_4):S375-S379 [PMID: 28830113]
  38. Euro Surveill. 2020 Mar;25(10): [PMID: 32183935]
  39. Am J Public Health. 2017 Jul;107(7):1130-1136 [PMID: 28520492]
  40. Chaos Solitons Fractals. 2020 Nov;140:110189 [PMID: 32834659]
  41. Nature. 2009 Feb 19;457(7232):1012-4 [PMID: 19020500]
  42. Annu Rev Public Health. 2020 Apr 2;41:101-118 [PMID: 31905322]
  43. Int J Nurs Stud. 2018 Jun;82:68-78 [PMID: 29609154]
  44. Am J Prev Med. 2011 May;40(5 Suppl 2):S154-8 [PMID: 21521589]
  45. Emerg Infect Dis. 2019 Jun;25(6):1041-1049 [PMID: 31107221]
  46. China CDC Wkly. 2020 Feb 21;2(8):113-122 [PMID: 34594836]
  47. Sci Rep. 2019 Jan 23;9(1):320 [PMID: 30674890]
  48. Science. 2014 Mar 14;343(6176):1203-5 [PMID: 24626916]
  49. PLoS Comput Biol. 2015 Oct 29;11(10):e1004513 [PMID: 26513245]
  50. Ann Emerg Med. 2010 Sep;56(3):288-294.e6 [PMID: 20605260]

Word Cloud

Created with Highcharts 10.0.0medicalonlinedataOMCconfirmedcasessurveillanceforecastresourceshealthtrendInternetstudypredictiveconsultationOMAOMSdisease2020localpandemicCOVID-19newlyimportantmobilizefacilitatepolicymakingpublicemergencyDigitalusingavailableincreasinglybecomeadvancementassessedvaluemultiplebehavioralincludingappointmentsearchregionaloutbreakcoronavirus2019ShenzhenChinaJanuary1March5Multivariatevectorautoregressionmodelsusedpredictionresultsidentifiednovelpredictorcan2daysaheadofficialreportsdepartmentrelativelyweakerpowermodelfailedpredicthighlightsimportanceimplicationprovidingevidence-basedguidelinesauthoritiesevaluaterisksallocateTurnFirst?UsingOnlineMedicalBehavioralDataForecastEpidemicTrendeHealthtelehealth

Similar Articles

Cited By