Stronger induction of trained immunity by mucosal BCG or MTBVAC vaccination compared to standard intradermal vaccination.

Michel P M Vierboom, Karin Dijkman, Claudia C Sombroek, Sam O Hofman, Charelle Boot, Richard A W Vervenne, Krista G Haanstra, Maarten van der Sande, Liesbeth van Emst, Jorge Domínguez-Andrés, Simone J C F M Moorlag, Clemens H M Kocken, Jelle Thole, Esteban Rodríguez, Eugenia Puentes, Joost H A Martens, Reinout van Crevel, Mihai G Netea, Nacho Aguilo, Carlos Martin, Frank A W Verreck
Author Information
  1. Michel P M Vierboom: Biomedical Primate Research Centre, Rijswijk, the Netherlands.
  2. Karin Dijkman: Biomedical Primate Research Centre, Rijswijk, the Netherlands.
  3. Claudia C Sombroek: Biomedical Primate Research Centre, Rijswijk, the Netherlands.
  4. Sam O Hofman: Biomedical Primate Research Centre, Rijswijk, the Netherlands.
  5. Charelle Boot: Biomedical Primate Research Centre, Rijswijk, the Netherlands.
  6. Richard A W Vervenne: Biomedical Primate Research Centre, Rijswijk, the Netherlands.
  7. Krista G Haanstra: Biomedical Primate Research Centre, Rijswijk, the Netherlands.
  8. Maarten van der Sande: Department of Molecular Biology, Faculty of Science, Nijmegen Centre for Molecular Life Sciences, Radboud University, Nijmegen, the Netherlands.
  9. Liesbeth van Emst: Radboud University Medical Centre, Nijmegen, the Netherlands.
  10. Jorge Domínguez-Andrés: Radboud University Medical Centre, Nijmegen, the Netherlands.
  11. Simone J C F M Moorlag: Radboud University Medical Centre, Nijmegen, the Netherlands.
  12. Clemens H M Kocken: Biomedical Primate Research Centre, Rijswijk, the Netherlands.
  13. Jelle Thole: TuBerculosis Vaccine Initiative, Lelystad, the Netherlands.
  14. Esteban Rodríguez: Biofabri, Pontevedra, Spain.
  15. Eugenia Puentes: Biofabri, Pontevedra, Spain.
  16. Joost H A Martens: Department of Molecular Biology, Faculty of Science, Nijmegen Centre for Molecular Life Sciences, Radboud University, Nijmegen, the Netherlands.
  17. Reinout van Crevel: Radboud University Medical Centre, Nijmegen, the Netherlands.
  18. Mihai G Netea: Radboud University Medical Centre, Nijmegen, the Netherlands.
  19. Nacho Aguilo: Department of Microbiology, Faculty of Medicine, IIS Aragón, University of Zaragoza, Zaragoza, Spain.
  20. Carlos Martin: Department of Microbiology, Faculty of Medicine, IIS Aragón, University of Zaragoza, Zaragoza, Spain.
  21. Frank A W Verreck: Biomedical Primate Research Centre, Rijswijk, the Netherlands.

Abstract

BCG vaccination can strengthen protection against pathogens through the induction of epigenetic and metabolic reprogramming of innate immune cells, a process called trained immunity. We and others recently demonstrated that mucosal or intravenous BCG better protects rhesus macaques from infection and TB disease than standard intradermal vaccination, correlating with local adaptive immune signatures. In line with prior mouse data, here, we show in rhesus macaques that intravenous BCG enhances innate cytokine production associated with changes in H3K27 acetylation typical of trained immunity. Alternative delivery of BCG does not alter the cytokine production of unfractionated bronchial lavage cells. However, mucosal but not intradermal vaccination, either with BCG or the -derived candidate MTBVAC, enhances innate cytokine production by blood- and bone marrow-derived monocytes associated with metabolic rewiring, typical of trained immunity. These results provide support to strategies for improving TB vaccination and, more broadly, modulating innate immunity via mucosal surfaces.

Keywords

References

  1. Cell. 2018 Nov 29;175(6):1634-1650.e17 [PMID: 30433869]
  2. Lancet Respir Med. 2019 Sep;7(9):757-770 [PMID: 31416768]
  3. Science. 2014 Sep 26;345(6204):1251086 [PMID: 25258085]
  4. Clin Microbiol Infect. 2019 Dec;25(12):1468-1472 [PMID: 30807849]
  5. PeerJ. 2016 Jul 19;4:e2209 [PMID: 27547532]
  6. Nature. 2020 Jan;577(7788):95-102 [PMID: 31894150]
  7. Nat Commun. 2017 Jul 14;8:16085 [PMID: 28706226]
  8. J Clin Invest. 2019 Sep 3;129(9):3482-3491 [PMID: 31478909]
  9. Lancet. 1995 Nov 18;346(8986):1339-45 [PMID: 7475776]
  10. Lancet Respir Med. 2015 Dec;3(12):953-62 [PMID: 26598141]
  11. Nat Rev Microbiol. 2005 Aug;3(8):656-62 [PMID: 16012514]
  12. Front Microbiol. 2020 Jan 30;10:3154 [PMID: 32082273]
  13. Science. 2016 Apr 22;352(6284):aaf1098 [PMID: 27102489]
  14. BMJ. 2016 Oct 13;355:i5170 [PMID: 27737834]
  15. Bioinformatics. 2009 Jul 15;25(14):1754-60 [PMID: 19451168]
  16. Nat Rev Immunol. 2018 Sep;18(9):575-589 [PMID: 29895826]
  17. Front Immunol. 2019 Apr 03;10:684 [PMID: 31001278]
  18. Cell Host Microbe. 2012 Aug 16;12(2):223-32 [PMID: 22901542]
  19. Cell Rep Med. 2021 Jan 19;2(1):100187 [PMID: 33521701]
  20. Lancet. 2020 Aug 15;396(10249):467-478 [PMID: 32702298]
  21. J Clin Invest. 2018 May 1;128(5):1837-1851 [PMID: 29461976]
  22. Cell Host Microbe. 2018 Jan 10;23(1):89-100.e5 [PMID: 29324233]
  23. PLoS Pathog. 2020 Apr 2;16(4):e1008404 [PMID: 32240273]
  24. Cell Host Microbe. 2020 Aug 12;28(2):322-334.e5 [PMID: 32544459]
  25. Tuberculosis (Edinb). 2017 May;104:46-57 [PMID: 28454649]
  26. Front Immunol. 2017 Dec 15;8:1803 [PMID: 29326700]
  27. BMJ Open. 2020 Feb 28;10(2):e035595 [PMID: 32114478]
  28. Immunity. 2017 Apr 18;46(4):549-561 [PMID: 28423336]
  29. Clin Infect Dis. 2014 Feb;58(4):470-80 [PMID: 24336911]
  30. Nat Methods. 2015 Oct;12(10):963-965 [PMID: 26280331]
  31. Nat Rev Immunol. 2020 Jun;20(6):375-388 [PMID: 32132681]
  32. Science. 2014 Sep 26;345(6204):1250684 [PMID: 25258083]
  33. Mucosal Immunol. 2019 May;12(3):589-600 [PMID: 30874596]
  34. Genome Biol. 2008;9(9):R137 [PMID: 18798982]
  35. N Engl J Med. 2018 Jul 12;379(2):138-149 [PMID: 29996082]
  36. Nat Med. 2019 Feb;25(2):255-262 [PMID: 30664782]
  37. Cell. 2018 Jan 11;172(1-2):176-190.e19 [PMID: 29328912]
  38. J Infect Dis. 2011 Jul 15;204(2):245-52 [PMID: 21673035]
  39. J Infect Dis. 2020 Mar 28;221(8):1342-1350 [PMID: 30958547]
  40. Proc Natl Acad Sci U S A. 2012 Oct 23;109(43):17537-42 [PMID: 22988082]
  41. Infect Immun. 2002 Feb;70(2):672-8 [PMID: 11796598]
  42. Am Rev Respir Dis. 1973 Mar;107(3):351-8 [PMID: 4632221]
  43. F1000Res. 2018 Feb 16;7:199 [PMID: 29568497]
  44. Front Immunol. 2019 Nov 01;10:2479 [PMID: 31736945]
  45. Expert Rev Vaccines. 2013 Dec;12(12):1431-48 [PMID: 24195481]
  46. NPJ Vaccines. 2021 Jan 4;6(1):4 [PMID: 33397991]
  47. J Immunol. 2020 Nov 15;205(10):2750-2762 [PMID: 32998983]
  48. J Infect Dis. 2019 Aug 30;220(7):1091-1098 [PMID: 31165861]
  49. Expert Rev Vaccines. 2017 Jun;16(6):565-576 [PMID: 28447476]
  50. Vaccine. 2013 Oct 1;31(42):4867-73 [PMID: 23965219]

MeSH Term

Acetylation
Administration, Intranasal
Animals
BCG Vaccine
Bone Marrow
Cellular Reprogramming
Female
Gene Expression Regulation
Histones
Immunity, Mucosal
Injections, Intravenous
Interleukin-1beta
Interleukin-6
Lung
Macaca mulatta
Male
Monocytes
Mycobacterium tuberculosis
Respiratory Mucosa
Tuberculosis Vaccines
Tuberculosis, Pulmonary
Tumor Necrosis Factor-alpha

Chemicals

BCG Vaccine
Histones
Interleukin-1beta
Interleukin-6
MTBVAC vaccine
Tuberculosis Vaccines
Tumor Necrosis Factor-alpha

Word Cloud

Created with Highcharts 10.0.0BCGvaccinationimmunityinnatetrainedmucosalintradermalcytokineproductionMTBVACinductionmetabolicimmunecellsintravenousrhesusmacaquesTBstandardenhancesassociatedtypicalcanstrengthenprotectionpathogensepigeneticreprogrammingprocesscalledothersrecentlydemonstratedbetterprotectsinfectiondiseasecorrelatinglocaladaptivesignatureslinepriormousedatashowchangesH3K27acetylationAlternativedeliveryalterunfractionatedbronchiallavageHowevereither-derivedcandidateblood-bonemarrow-derivedmonocytesrewiringresultsprovidesupportstrategiesimprovingbroadlymodulatingviasurfacesStrongercomparedimmunotherapynon-humanprimatestuberculosisvaccinedevelopment

Similar Articles

Cited By