Harmful effects of metal(loid) oxide nanoparticles.

Eduardo V Soares, Helena M V M Soares
Author Information
  1. Eduardo V Soares: Bioengineering Laboratory-CIETI, ISEP-School of Engineering, Polytechnic Institute of Porto, rua Dr António Bernardino de Almeida, 431, 4249-015, Porto, Portugal. evs@isep.ipp.pt. ORCID
  2. Helena M V M Soares: REQUIMTE/LAQV, Departamento de Engenharia Química, Faculdade de Engenharia, Universidade do Porto, rua Dr Roberto Frias, s/n, 4200-465, Porto, Portugal. ORCID

Abstract

The incorporation of nanomaterials (NMs), including metal(loid) oxide (MOx) nanoparticles (NPs), in the most diversified consumer products, has grown enormously in recent decades. Consequently, the contact between humans and these materials increased, as well as their presence in the environment. This fact has raised concerns and uncertainties about the possible risks of NMs to human health and the adverse effects on the environment. These concerns underline the need and importance of assessing its nanosecurity. The present review focuses on the main mechanisms underlying the MOx NPs toxicity, illustrated with different biological models: release of toxic ions, cellular uptake of NPs, oxidative stress, shading effect on photosynthetic microorganisms, physical restrain and damage of cell wall. Additionally, the biological models used to evaluate the potential hazardous of nanomaterials are briefly presented, with particular emphasis on the yeast Saccharomyces cerevisiae, as an alternative model in nanotoxicology. An overview containing recent scientific advances on cellular responses (toxic symptoms exhibited by yeasts) resulting from the interaction with MOx NPs (inhibition of cell proliferation, cell wall damage, alteration of function and morphology of organelles, presence of oxidative stress bio-indicators, gene expression changes, genotoxicity and cell dead) is critically presented. The elucidation of the toxic modes of action of MOx NPs in yeast cells can be very useful in providing additional clues about the impact of NPs on the physiology and metabolism of the eukaryotic cell. Current and future trends of MOx NPs toxicity, regarding their possible impacts on the environment and human health, are discussed. KEY POINTS: • The potential hazardous effects of MOx NPs are critically reviewed. • An overview of the main mechanisms associated with MOx NPs toxicity is presented. • Scientific advances about yeast cell responses to MOx NPs are updated and discussed.

Keywords

References

  1. Small. 2013 Apr 8;9(7):970-82 [PMID: 23296910]
  2. Int J Environ Health Res. 2022 Apr;32(4):885-901 [PMID: 32772735]
  3. Ecotoxicol Environ Saf. 2015 Mar;113:23-30 [PMID: 25483368]
  4. Ecotoxicol Environ Saf. 2015 Apr;114:109-16 [PMID: 25625916]
  5. Annu Rev Physiol. 2006;68:253-78 [PMID: 16460273]
  6. J Nanosci Nanotechnol. 2019 Sep 1;19(9):5418-5425 [PMID: 30961691]
  7. FEMS Yeast Res. 2018 Aug 1;18(5): [PMID: 29788060]
  8. Chemosphere. 2020 May;247:125935 [PMID: 31978663]
  9. ACS Nano. 2016 Mar 22;10(3):3042-68 [PMID: 26918485]
  10. Chemosphere. 2013 Oct;93(6):1201-6 [PMID: 23886442]
  11. Chemosphere. 2013 Nov;93(10):2514-22 [PMID: 24139157]
  12. Appl Environ Microbiol. 2015 Dec;81(23):8098-107 [PMID: 26386067]
  13. Environ Sci Process Impacts. 2015 Jul;17(7):1265-70 [PMID: 26022751]
  14. Gene. 1997 Aug 11;195(1):1-10 [PMID: 9300813]
  15. Autophagy. 2019 Jan;15(1):4-33 [PMID: 30160607]
  16. Toxicol In Vitro. 2009 Sep;23(6):1116-22 [PMID: 19486936]
  17. Environ Pollut. 2013 Oct;181:287-300 [PMID: 23856352]
  18. Int J Nanomedicine. 2014 May 06;9 Suppl 1:51-63 [PMID: 24872703]
  19. Environ Sci Technol. 2010 Oct 1;44(19):7329-34 [PMID: 20469893]
  20. Ecotoxicol Environ Saf. 2012 Oct;84:155-62 [PMID: 22883605]
  21. Int J Nanomedicine. 2013;8:983-93 [PMID: 23493450]
  22. J Microsc. 2017 Aug;267(2):227-236 [PMID: 28394445]
  23. Front Genet. 2012 Apr 19;3:63 [PMID: 22529852]
  24. Toxicol Rep. 2018 Dec 07;6:64-73 [PMID: 30581761]
  25. Nanotoxicology. 2014 Sep;8(6):605-30 [PMID: 23738945]
  26. Chem Biol Interact. 2016 May 25;252:9-18 [PMID: 27041071]
  27. Nanotoxicology. 2014 Aug;8 Suppl 1:57-71 [PMID: 24256211]
  28. Cell Biol Toxicol. 2020 Feb;36(1):65-82 [PMID: 31352547]
  29. Environ Sci Technol. 2007 Dec 15;41(24):8484-90 [PMID: 18200883]
  30. Molecules. 2018 Jul 18;23(7): [PMID: 30021974]
  31. Mol Cell Biochem. 1999 Nov;201(1-2):17-24 [PMID: 10630618]
  32. Science. 2006 Feb 3;311(5761):622-7 [PMID: 16456071]
  33. Plant Cell Physiol. 2016 Jul;57(7):1364-1376 [PMID: 27081099]
  34. Food Chem Toxicol. 2012 Mar;50(3-4):641-7 [PMID: 22273695]
  35. Int J Nanomedicine. 2017 Apr 18;12:3137-3151 [PMID: 28458536]
  36. Genetics. 2014 Jun;197(2):451-65 [PMID: 24939991]
  37. Aquat Toxicol. 2015 Nov;168:90-7 [PMID: 26461912]
  38. Aquat Toxicol. 2015 Apr;161:267-75 [PMID: 25731685]
  39. Appl Microbiol Biotechnol. 2019 Aug;103(15):6257-6269 [PMID: 31152204]
  40. PLoS One. 2018 Mar 19;13(3):e0193111 [PMID: 29554091]
  41. J Biol Chem. 2012 Apr 20;287(17):13510-7 [PMID: 22389499]
  42. Environ Toxicol Chem. 2020 Oct;39(10):1861-1883 [PMID: 32619073]
  43. Ecotoxicol Environ Saf. 2020 Sep 15;201:110781 [PMID: 32497816]
  44. J Hazard Mater. 2011 Sep 15;192(3):1572-9 [PMID: 21782338]
  45. J Hazard Mater. 2015 Apr 9;286:75-84 [PMID: 25559861]
  46. J Hazard Mater. 2011 Aug 30;192(2):786-93 [PMID: 21700389]
  47. Nanotoxicology. 2014 Jun;8(4):363-73 [PMID: 23521755]
  48. Lab Anim (NY). 2018 Oct;47(10):277-289 [PMID: 30224793]
  49. Int J Nanomedicine. 2020 May 08;15:3291-3302 [PMID: 32494130]
  50. Hum Exp Toxicol. 2016 Feb;35(2):170-83 [PMID: 25829403]
  51. Beilstein J Nanotechnol. 2015 Aug 21;6:1769-80 [PMID: 26425429]
  52. Environ Sci Technol. 2016 May 3;50(9):4701-11 [PMID: 27043743]
  53. Free Radic Biol Med. 2011 Nov 15;51(10):1872-81 [PMID: 21920432]
  54. Chemosphere. 2008 Apr;71(7):1308-16 [PMID: 18194809]
  55. Appl Microbiol Biotechnol. 2018 Mar;102(6):2827-2838 [PMID: 29423633]
  56. Chem Res Toxicol. 2018 Aug 20;31(8):658-665 [PMID: 30043610]
  57. Sci Rep. 2015 Oct 22;5:15613 [PMID: 26489858]
  58. ACS Nano. 2008 Oct 28;2(10):2121-34 [PMID: 19206459]
  59. Nature. 2009 Aug 27;460(7259):1080-1 [PMID: 19713914]
  60. Front Public Health. 2020 May 21;8:192 [PMID: 32509719]
  61. Nano Lett. 2006 Aug;6(8):1794-807 [PMID: 16895376]
  62. Curr Opin Biotechnol. 2015 Jun;33:183-91 [PMID: 25812478]
  63. Sci Total Environ. 2009 Feb 1;407(4):1461-8 [PMID: 19038417]
  64. Aquat Toxicol. 2019 Sep;214:105265 [PMID: 31416018]
  65. Toxicol In Vitro. 2013 Feb;27(1):292-8 [PMID: 22954531]
  66. Aquat Toxicol. 2016 Jan;170:162-174 [PMID: 26655660]
  67. Environ Toxicol Chem. 2018 Aug;37(8):2029-2063 [PMID: 29633323]
  68. Biochim Biophys Acta. 2007 Feb;1773(2):93-104 [PMID: 17023064]
  69. Int J Biochem Cell Biol. 2016 Jun;75:162-74 [PMID: 26873405]
  70. Small. 2020 Sep;16(36):e2000618 [PMID: 32402152]
  71. Sci Total Environ. 2016 Apr 15;550:619-627 [PMID: 26849326]
  72. Anal Biochem. 2018 Jul 1;552:50-59 [PMID: 28711444]
  73. Environ Pollut. 2012 Oct;169:81-9 [PMID: 22694973]
  74. Toxicol Appl Pharmacol. 2015 Jul 15;286(2):80-91 [PMID: 25840356]
  75. Environ Sci Technol. 2006 Jul 15;40(14):4374-81 [PMID: 16903273]
  76. Biochem J. 2011 Mar 1;434(2):201-10 [PMID: 21309749]
  77. Environ Pollut. 2017 Nov;230:250-267 [PMID: 28662490]
  78. Aquat Toxicol. 2019 Dec;217:105311 [PMID: 31730931]
  79. Aquat Toxicol. 2018 Nov;204:80-90 [PMID: 30205248]
  80. Toxicology. 2008 Mar 12;245(1-2):90-100 [PMID: 18243471]
  81. PLoS One. 2020 Jul 29;15(7):e0235988 [PMID: 32726346]
  82. Environ Pollut. 2013 Sep;180:63-70 [PMID: 23727569]
  83. Toxicol In Vitro. 2016 Sep;35:169-79 [PMID: 27317967]
  84. Sci Total Environ. 2020 Jun 15;721:137778 [PMID: 32179352]
  85. Environ Toxicol Chem. 2017 Dec;36(12):3181-3193 [PMID: 28731222]
  86. Chem Res Toxicol. 2013 Mar 18;26(3):356-67 [PMID: 23339633]
  87. Proc Natl Acad Sci U S A. 1988 Sep;85(17):6465-7 [PMID: 3413108]
  88. Chem Res Toxicol. 2008 Sep;21(9):1726-32 [PMID: 18710264]
  89. J Proteomics. 2016 Mar 30;137:19-34 [PMID: 26365628]
  90. Aquat Toxicol. 2016 Jan;170:120-128 [PMID: 26655656]
  91. Toxicology. 2010 Mar 10;269(2-3):190-7 [PMID: 19686796]
  92. ACS Nano. 2012 May 22;6(5):4349-68 [PMID: 22502734]
  93. Beilstein J Nanotechnol. 2015 Aug 25;6:1788-804 [PMID: 26425431]
  94. Ecotoxicol Environ Saf. 2020 Sep 15;201:110815 [PMID: 32559688]
  95. Science. 1996 Oct 25;274(5287):546, 563-7 [PMID: 8849441]
  96. Chemosphere. 2018 Dec;213:65-75 [PMID: 30212720]
  97. Water Res. 2012 Sep 15;46(14):4477-87 [PMID: 22704133]
  98. Environ Toxicol Chem. 2016 Jan;35(1):134-43 [PMID: 26178758]
  99. Nanotoxicology. 2016;10(1):32-41 [PMID: 25740379]
  100. Aquat Toxicol. 2017 Jun;187:108-114 [PMID: 28410471]
  101. Environ Pollut. 2018 May;236:454-461 [PMID: 29414370]
  102. Small. 2020 Sep;16(36):e2000690 [PMID: 32407002]
  103. PLoS One. 2013 Aug 05;8(8):e69534 [PMID: 23940521]
  104. Environ Sci Eur. 2018;30(1):6 [PMID: 29456907]
  105. J Hazard Mater. 2012 Aug 15;227-228:301-8 [PMID: 22682800]
  106. J Toxicol Environ Health A. 2020 May 2;83(9):363-377 [PMID: 32414304]
  107. Aquat Toxicol. 2018 Apr;197:41-46 [PMID: 29433081]
  108. Aquat Toxicol. 2020 Jul;224:105498 [PMID: 32402915]
  109. J Hazard Mater. 2016 May 5;308:328-34 [PMID: 26852208]
  110. Mar Environ Res. 2020 Oct;161:105110 [PMID: 32977204]
  111. Biomed Res Int. 2017;2017:9528180 [PMID: 28473991]
  112. Crit Rev Toxicol. 2020 Jan;50(1):47-71 [PMID: 32186437]
  113. Chem Biol Interact. 2019 Oct 1;312:108814 [PMID: 31509734]
  114. Yeast. 1998 Dec;14(16):1511-27 [PMID: 9885153]
  115. Sci Total Environ. 2016 Sep 15;565:951-960 [PMID: 26803219]
  116. Chemosphere. 2009 Sep;76(10):1356-65 [PMID: 19580988]
  117. Chem Biol Interact. 2020 Jan 25;316:108935 [PMID: 31870842]
  118. Molecules. 2017 Aug 31;22(9): [PMID: 28858240]
  119. Int J Nanomedicine. 2017 Feb 28;12:1621-1637 [PMID: 28280330]
  120. J Environ Sci (China). 2018 Jan;63:198-217 [PMID: 29406103]
  121. Sci Total Environ. 2015 Mar 1;508:525-33 [PMID: 25483108]
  122. Biochim Biophys Acta. 2008 Nov;1780(11):1217-35 [PMID: 18178164]
  123. Chem Res Toxicol. 2019 Feb 18;32(2):245-254 [PMID: 30656935]
  124. Environ Sci Technol. 2011 Mar 1;45(5):1977-83 [PMID: 21280647]
  125. Nat Nanotechnol. 2019 Jun;14(6):523-531 [PMID: 31168074]
  126. Nanoscale Adv. 2019 May 7;1(6):2323-2336 [PMID: 36131971]
  127. Aquat Toxicol. 2015 Jan;158:1-13 [PMID: 25461740]
  128. Toxicol Sci. 2011 Jan;119(1):135-45 [PMID: 20929986]
  129. Ecotoxicology. 2008 Jul;17(5):372-86 [PMID: 18461442]
  130. Sci Rep. 2016 Apr 20;6:24839 [PMID: 27094203]
  131. Toxicol Appl Pharmacol. 2010 Aug 1;246(3):116-27 [PMID: 20434478]
  132. Chemosphere. 2013 Apr;91(4):536-44 [PMID: 23357865]
  133. Aquat Toxicol. 2012 Oct 15;122-123:133-43 [PMID: 22797055]
  134. Environ Int. 2016 Jul-Aug;92-93:189-201 [PMID: 27107224]
  135. Part Fibre Toxicol. 2015 Mar 19;12:5 [PMID: 25888760]
  136. Small. 2020 Sep;16(36):e2003691 [PMID: 32780948]

Grants

  1. UIDB/50006/2020/FCT - Foundation for Science and Technology
  2. UID/BIO/04469/2020/FCT - Foundation for Science and Technology
  3. NORTE-01-0145-FEDER-000004/FCT - Foundation for Science and Technology

MeSH Term

Humans
Ions
Metal Nanoparticles
Metals
Nanoparticles
Oxidative Stress
Oxides

Chemicals

Ions
Metals
Oxides

Word Cloud

Created with Highcharts 10.0.0NPsMOxcellloidoxidenanoparticlesenvironmenteffectstoxicitytoxicpresentedyeastnanomaterialsNMsmetalrecentpresenceconcernspossiblehumanhealthmainmechanismsbiologicalcellularoxidativestressdamagewallpotentialhazardousoverviewadvancesresponsescriticallymodesactiondiscussedincorporationincludingdiversifiedconsumerproductsgrownenormouslydecadesConsequentlycontacthumansmaterialsincreasedwellfactraiseduncertaintiesrisksadverseunderlineneedimportanceassessingnanosecuritypresentreviewfocusesunderlyingillustrateddifferentmodels:releaseionsuptakeshadingeffectphotosyntheticmicroorganismsphysicalrestrainAdditionallymodelsusedevaluatebrieflyparticularemphasisSaccharomycescerevisiaealternativemodelnanotoxicologycontainingscientificsymptomsexhibitedyeastsresultinginteractioninhibitionproliferationalterationfunctionmorphologyorganellesbio-indicatorsgeneexpressionchangesgenotoxicitydeadelucidationcellscanusefulprovidingadditionalcluesimpactphysiologymetabolismeukaryoticCurrentfuturetrendsregardingimpactsKEYPOINTS:reviewedassociatedScientificupdatedHarmfulAquaticorganismsHazard/riskassessmentMetalNanosafetyToxicYeast

Similar Articles

Cited By