Rapid review of COVID-19 epidemic estimation studies for Iran.

Farshad Pourmalek, Mohsen Rezaei Hemami, Leila Janani, Maziar Moradi-Lakeh
Author Information
  1. Farshad Pourmalek: University of British Columbia, Vancouver, Canada.
  2. Mohsen Rezaei Hemami: Aberdeen Centre for Health Data Sciences, University of Aberdeen, Aberdeen, UK.
  3. Leila Janani: Department of Biostatistics, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.
  4. Maziar Moradi-Lakeh: Preventive Medicine and Public Health Research Center, Psychosocial Health Research Institute, Community and Family Medicine Department, School of Medicine, Iran University of Medical Sciences, Tehran, Iran. moradilakeh.m@iums.ac.ir. ORCID

Abstract

BACKGROUND: To inform researchers about the methodology and results of epidemic estimation studies performed for COVID-19 epidemic in Iran, we aimed to perform a rapid review.
METHODS: We searched for and included published articles, preprint manuscripts and reports that estimated numbers of cumulative or daily deaths or cases of COVID-19 in Iran. We found 131 studies and included 29 of them.
RESULTS: The included studies provided outputs for a total of 84 study-model/scenario combinations. Sixteen studies used 3-4 compartmental disease models. At the end of month two of the epidemic (2020-04-19), the lowest (and highest) values of predictions were 1,777 (388,951) for cumulative deaths, 20,588 (2,310,161) for cumulative cases, and at the end of month four (2020-06-20), were 3,590 (1,819,392) for cumulative deaths, and 144,305 (4,266,964) for cumulative cases. Highest estimates of cumulative deaths (and cases) for latest date available in 2020 were 418,834 on 2020-12-19 (and 41,475,792 on 2020-12-31). Model estimates predict an ominous course of epidemic progress in Iran. Increase in percent population using masks from the current situation to 95% might prevent 26,790 additional deaths (95% confidence interval 19,925-35,208) by the end of year 2020.
CONCLUSIONS: Meticulousness and degree of details reported for disease modeling and statistical methods used in the included studies varied widely. Greater heterogeneity was observed regarding the results of predicted outcomes. Consideration of minimum and preferred reporting items in epidemic estimation studies might better inform future revisions of the available models and new models to be developed. Not accounting for under-reporting drives the models' results misleading.

Keywords

References

  1. Iran J Public Health. 2020 Aug;49(8):1564-1568 [PMID: 33083334]
  2. Disaster Med Public Health Prep. 2020 Dec;14(6):e12-e14 [PMID: 32631463]
  3. Bull World Health Organ. 2021 Jan 01;99(1):19-33F [PMID: 33716331]
  4. Lancet. 2020 Mar 21;395(10228):931-934 [PMID: 32164834]
  5. Lancet. 2020 Mar 28;395(10229):1063-1077 [PMID: 32145185]
  6. Nature. 2020 Aug;584(7820):262-267 [PMID: 32512578]
  7. Arch Iran Med. 2020 Apr 01;23(4):235-238 [PMID: 32271595]
  8. Int J Infect Dis. 2020 Sep;98:90-108 [PMID: 32574693]
  9. Int J Epidemiol. 2021 May 17;50(2):410-419 [PMID: 33615345]
  10. Int J Environ Res Public Health. 2020 May 18;17(10): [PMID: 32443476]
  11. Sci Total Environ. 2020 Nov 10;742:140430 [PMID: 32623158]
  12. Ann Intern Med. 2020 May 19;172(10):699-701 [PMID: 32176272]
  13. PLoS One. 2020 Oct 14;15(10):e0239678 [PMID: 33052918]
  14. Ann Intern Med. 2009 Aug 18;151(4):264-9, W64 [PMID: 19622511]
  15. Med J Islam Repub Iran. 2020 Mar 29;34:26 [PMID: 32551315]
  16. Arch Iran Med. 2020 Jul 01;23(7):503-504 [PMID: 32657602]
  17. PLoS One. 2020 Jul 6;15(7):e0234763 [PMID: 32628673]
  18. Ann Intern Med. 2015 Jan 6;162(1):W1-73 [PMID: 25560730]
  19. BMJ. 2020 Apr 7;369:m1328 [PMID: 32265220]
  20. PLoS One. 2020 Jul 28;15(7):e0236238 [PMID: 32722716]
  21. Emerg Themes Epidemiol. 2013 May 07;10(1):3 [PMID: 23651557]
  22. Environ Resour Econ (Dordr). 2020;76(4):671-683 [PMID: 32836866]
  23. Med J Islam Repub Iran. 2020 Jul 15;34:80 [PMID: 33306040]
  24. Arch Iran Med. 2020 Apr 01;23(4):244-248 [PMID: 32271597]
  25. BMJ. 2020 Oct 19;371:m3979 [PMID: 33077431]
  26. Eur J Epidemiol. 2020 Dec;35(12):1123-1138 [PMID: 33289900]
  27. Nat Med. 2021 Jan;27(1):94-105 [PMID: 33097835]
  28. Med J Islam Repub Iran. 2020 Mar 31;34:27 [PMID: 32617266]
  29. Epidemics. 2020 Dec;33:100418 [PMID: 33221671]
  30. Science. 2020 Jul 24;369(6502):413-422 [PMID: 32532802]
  31. Emerg Infect Dis. 2020 Aug;26(8):1915-1917 [PMID: 32320641]
  32. JMIR Public Health Surveill. 2020 May 13;6(2):e19115 [PMID: 32391801]
  33. JMIR Public Health Surveill. 2020 Apr 14;6(2):e18828 [PMID: 32234709]
  34. BMJ. 2020 Jul 7;370:m2728 [PMID: 32636189]
  35. Int J Infect Dis. 2020 Jul;96:582-589 [PMID: 32376306]
  36. Int J Infect Dis. 2020 May;94:29-31 [PMID: 32171951]
  37. Syst Dyn Rev. 2020 Jan-Mar;36(1):101-129 [PMID: 32834468]
  38. J Clin Med. 2020 Mar 31;9(4): [PMID: 32244365]

MeSH Term

COVID-19
Epidemics
Humans
Iran

Word Cloud

Created with Highcharts 10.0.0studiesepidemiccumulativeIrandeathsCOVID-19includedcasesresultsestimationmodelsendinformreviewuseddiseasemonth1estimatesavailable2020Model95%mightBACKGROUND:researchersmethodologyperformedaimedperformrapidMETHODS:searchedpublishedarticlespreprintmanuscriptsreportsestimatednumbersdailyfound13129themRESULTS:providedoutputstotal84study-model/scenariocombinationsSixteen3-4compartmentaltwo2020-04-19lowesthighestvaluespredictions777388951205882310161four2020-06-2035908193921443054266964Highestlatestdate4188342020-12-19414757922020-12-31predictominouscourseprogressIncreasepercentpopulationusingmaskscurrentsituationprevent26790additionalconfidenceinterval19925-35208yearCONCLUSIONS:MeticulousnessdegreedetailsreportedmodelingstatisticalmethodsvariedwidelyGreaterheterogeneityobservedregardingpredictedoutcomesConsiderationminimumpreferredreportingitemsbetterfuturerevisionsnewdevelopedaccountingunder-reportingdrivesmodels'misleadingRapidCasesDeathsEpidemicEstimationPandemicPrediction

Similar Articles

Cited By (12)